1887

Abstract

Deletions leading to complete or partial removal of ParB were introduced into the chromosome. Fluorescence microscopy of fixed cells showed that ParB mutants lacking the C-terminal domain or HTH motif formed multiple, less intense foci scattered irregularly, in contrast to the one to four ParB foci per cell symmetrically distributed in wild-type . All mutations affected both bacterial growth and swarming and swimming motilities, and increased the production of anucleate cells. Similar effects were observed after inactivation of of . As complete loss of ParA destabilized its partner ParB it was unclear deficiency of which protein is responsible for the mutant phenotypes. Analysis of four mutants showed that complete loss of ParB destabilized ParA whereas three mutants that retained the N-terminal 90 aa of ParB did not. As all four mutants demonstrate the same defects it can be concluded that either ParB, or ParA and ParB in combination, plays an important role in nucleoid distribution, growth and motility in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024661-0
2009-04-01
2019-08-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1080.html?itemId=/content/journal/micro/10.1099/mic.0.024661-0&mimeType=html&fmt=ahah

References

  1. Adachi, S., Hori, K. & Hiraga, S. ( 2005; ). Subcellular positioning of F plasmid mediated by dynamic localization of SopA and SopB. J Mol Biol 356, 850–863.
    [Google Scholar]
  2. Autret, S., Nair, R. & Errington, J. ( 2001; ). Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein. Mol Microbiol 41, 743–755.[CrossRef]
    [Google Scholar]
  3. Bartosik, A. A., Lasocki, K., Mierzejewska, J., Thomas, C. M. & Jagura-Burdzy, G. ( 2004; ). ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth. J Bacteriol 186, 6983–6998.[CrossRef]
    [Google Scholar]
  4. Biek, D. P. & Strings, J. ( 1995; ). Partition functions of mini-F affect plasmid DNA topology in Escherichia coli. J Mol Biol 246, 388–400.[CrossRef]
    [Google Scholar]
  5. Bignell, C. & Thomas, C. M. ( 2001; ). The bacterial ParA-ParB partitioning proteins. J Biotechnol 91, 1–34.[CrossRef]
    [Google Scholar]
  6. Bignell, C. R., Haines, A. S., Khare, D. & Thomas, C. M. ( 1999; ). Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol Microbiol 34, 205–216.[CrossRef]
    [Google Scholar]
  7. Bouet, J. Y., Suretees, J. A. & Funnell, B. E. ( 2000; ). Stoichiometry of P1 plasmid partition complexes. J Biol Chem 275, 8213–8219.[CrossRef]
    [Google Scholar]
  8. Bowman, G. R., Comolli, L. R., Zhu, J., Eckart, M., Koenig, M., Downing, K. H., Moerner, W. E., Earnest, T. & Shapiro, L. ( 2008; ). A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134, 945–955.[CrossRef]
    [Google Scholar]
  9. Breier, A. M. & Grossman, A. ( 2007; ). Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol 64, 703–718.[CrossRef]
    [Google Scholar]
  10. Darzins, A. ( 1994; ). Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and gliding bacterium Myxococcus xanthus. Mol Microbiol 11, 137–153.[CrossRef]
    [Google Scholar]
  11. Dasgupta, N., Wolfgang, M. C., Goodman, A. L., Arora, S. K., Jyot, S., Lory, J. & Ramphal, R. ( 2003; ). A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50, 809–824.[CrossRef]
    [Google Scholar]
  12. Davey, M. J. & Funnell, B. E. ( 1994; ). The P1 plasmid partition protein ParA. A role for ATP in site-specific DNA binding. J Biol Chem 269, 29908–29913.
    [Google Scholar]
  13. Davis, M. A., Martin, K. A. & Austin, S. J. ( 1992; ). Biochemical activities of the ParA partition protein of the P1 plasmid. Mol Microbiol 6, 1141–1147.[CrossRef]
    [Google Scholar]
  14. Dubarry, N., Pasta, F. & Lane, D. ( 2006; ). ParABS systems of the four replicons of Burkholderia cenocepacia: new chromosome centromeres confer partition specificity. J Bacteriol 188, 1489–1496.[CrossRef]
    [Google Scholar]
  15. Easter, J., Jr & Gober, J. W. ( 2002; ). ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol Cell 10, 427–434.[CrossRef]
    [Google Scholar]
  16. Ebersbach, G. & Gerdes, K. ( 2004; ). Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol Microbiol 52, 385–398.[CrossRef]
    [Google Scholar]
  17. Ebersbach, G., Briegel, A., Jensen, G. J. & Jacobs-Wagner, C. ( 2008; ). A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell 134, 956–968.[CrossRef]
    [Google Scholar]
  18. El-Sayed, A. K., Hothersall, J. & Thomas, C. M. ( 2001; ). Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 147, 2127–2139.
    [Google Scholar]
  19. Erdmann, N., Petroff, T. & Funnell, B. E. ( 1999; ). Intracellular localization of P1 ParB protein depends on ParA and parS. Proc Natl Acad Sci U S A 96, 14905–14910.[CrossRef]
    [Google Scholar]
  20. Figge, R. M., Easter, J., Jr & Gober, J. W. ( 2003; ). Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol 47, 1225–1237.[CrossRef]
    [Google Scholar]
  21. Funnell, B. E. ( 1991; ). The P1 plasmid partition complex at parS. J Biol Chem 266, 14328–14337.
    [Google Scholar]
  22. Gal-Mor, O., Borovok, I., Av-gay, Y., Cohen, G. & Aharonowitz, Y. ( 1998; ). Gene organization in the trxA/B-oriC region of the Streptomyces coelicolor chromosome and comparison with other eubacteria. Gene 217, 83–90.[CrossRef]
    [Google Scholar]
  23. Glaser, P., Sharpe, M. E., Raether, B., Perego, M., Ohlsen, K. & Errington, J. ( 1997; ). Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev 11, 1160–1168.[CrossRef]
    [Google Scholar]
  24. Godfrin-Estevenon, A.-M., Pasta, F. & Lane, D. ( 2002; ). The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol Microbiol 43, 39–49.[CrossRef]
    [Google Scholar]
  25. Gordon, G. S., Sitnikov, D., Webb, C. D., Teleman, A., Straight, A., Losick, R., Murray, A. W. & Wright, A. ( 1997; ). Chromosome and low-copy-plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90, 1113–1121.[CrossRef]
    [Google Scholar]
  26. Irani, V. R. & Rowe, J. J. ( 1997; ). Enhancement of transformation in Pseudomonas aeruginosa PAO1 by Mg2+ and heat. Biotechniques 22, 54–56.
    [Google Scholar]
  27. Ireton, K., Gunther, N. W., IV & Grossman, A. D. ( 1994; ). spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol 176, 5320–5329.
    [Google Scholar]
  28. Jagura-Burdzy, G., Ibbotson, J. P. & Thomas, C. M. ( 1991; ). The korF region of broad-host-range plasmid RK2 encodes two polypeptides with transcriptional repressor activity. J Bacteriol 173, 826–833.
    [Google Scholar]
  29. Jagura-Burdzy, G., Macartney, D. P., Zatyka, M., Cunliffe, L., Cooke, D., Huggins, C., Westblade, L., Khanim, F. & Thomas, C. M. ( 1999; ). Repression at a distance by the global regulator KorB of promiscuous IncP plasmids. Mol Microbiol 32, 519–532.[CrossRef]
    [Google Scholar]
  30. Jakimowicz, D., Brzostek, A., Rumijowska-Galewicz, A., Żydek, P., Dolzblasz, A., Smulczyk-Krawczyszyn, A., Zimniak, T., Wojtasz, Ł., Zawilak-Pawlik, A. & other authors ( 2007a; ). Characterization of mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis. Microbiology 153, 4050–4060.[CrossRef]
    [Google Scholar]
  31. Jakimowicz, D., Żydek, P., Kois, A., Zakrzewska-Czerwińska, J. & Chater, K. F. ( 2007b; ). Alignment of multiple chromosomes along helical ParA scaffolding in sporulating Streptomyces hyphae. Mol Microbiol 65, 625–641.[CrossRef]
    [Google Scholar]
  32. Jensen, R. B. & Gerdes, K. ( 1997; ). Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. J Mol Biol 269, 505–513.[CrossRef]
    [Google Scholar]
  33. Kahn, M. R., Kolter, R., Thomas, C. M., Figurski, D., Meyer, R., Remault, E. & Helinski, D. R. ( 1979; ). Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. Methods Enzymol 68, 268–280.
    [Google Scholar]
  34. Kim, S.-K. & Shim, J. ( 1999; ). Interaction between F plasmid partition proteins SopA and SopB. Biochem Biophys Res Commun 263, 113–117.[CrossRef]
    [Google Scholar]
  35. Kim, H.-J., Calcut, M. J., Schmidt, F. J. & Chater, K. F. ( 2000; ). Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J Bacteriol 182, 1313–1320.[CrossRef]
    [Google Scholar]
  36. Kohler, T., Curty, L. K., Barja, F., van Delden, C. & Pechere, J. C. ( 2000; ). Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signalling and requires flagella and pili. J Bacteriol 182, 5990–5996.[CrossRef]
    [Google Scholar]
  37. Lasocki, K., Bartosik, A. A., Mierzejewska, J., Thomas, C. M. & Jagura-Burdzy, G. ( 2007; ). Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J Bacteriol 189, 5762–5772.[CrossRef]
    [Google Scholar]
  38. Lee, P. S. & Grossman, A. D. ( 2006; ). The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Mol Microbiol 60, 853–869.[CrossRef]
    [Google Scholar]
  39. Lee, P. S., Lin, D. C.-H., Moriya, S. & Grossman, A. D. ( 2003; ). Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis. J Bacteriol 185, 1326–1337.[CrossRef]
    [Google Scholar]
  40. Lee, M.-J., Liu, C.-H., Wang, S.-Y., Huang, C.-T. & Huang, N. ( 2006; ). Characterization of the Soj/Spo0J chromosome segregation proteins and identification of putative parS sequences in Helicobacter pylori. Biochem Biophys Res Commun 342, 744–750.[CrossRef]
    [Google Scholar]
  41. Leonard, T. A., Butler, P. J. & Lowe, J. ( 2005; ). Bacterial chromosome segregation: structure and DNA binding of the Soj dimer – a conserved biological switch. EMBO J 24, 270–282.[CrossRef]
    [Google Scholar]
  42. Lewis, P. J. & Errington, J. ( 1997; ). Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the Spo0J partitioning protein. Mol Microbiol 25, 945–954.[CrossRef]
    [Google Scholar]
  43. Lewis, R. A., Bignell, C. R., Zeng, W., Jones, A. C. & Thomas, C. M. ( 2002; ). Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. Microbiology 148, 537–548.
    [Google Scholar]
  44. Lin, D. C.-H. & Grossman, A. D. ( 1998; ). Identification and characterization of a bacterial chromosome partitioning site. Cell 92, 675–685.[CrossRef]
    [Google Scholar]
  45. Lukaszewicz, M., Kostelidou, K., Bartosik, A. A., Cooke, G. D., Thomas, C. M. & Jagura-Burdzy, G. ( 2002; ). Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res 30, 1046–1055.[CrossRef]
    [Google Scholar]
  46. Marston, A. L. & Errington, J. ( 1999; ). Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell 4, 673–682.[CrossRef]
    [Google Scholar]
  47. Mohl, D. A. & Gober, J. W. ( 1997; ). Cell-cycle dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88, 675–684.
    [Google Scholar]
  48. Mohl, D. A., Easter, J., Jr & Gober, J. W. ( 2001; ). The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol 42, 741–755.
    [Google Scholar]
  49. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. & Erlich, H. ( 1986; ). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51, 263–273.[CrossRef]
    [Google Scholar]
  50. Murray, H., Ferreira, H. & Errington, J. ( 2006; ). The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol Microbiol 61, 1352–1361.[CrossRef]
    [Google Scholar]
  51. Niki, H. & Hiraga, S. ( 1997; ). Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. Cell 90, 951–957.[CrossRef]
    [Google Scholar]
  52. Ogasawara, N. & Yoshikawa, H. ( 1992; ). Genes and their organization in the replication origin region of the bacterial chromosome. Mol Microbiol 6, 629–634.[CrossRef]
    [Google Scholar]
  53. Quisel, J. D. & Grossman, A. D. ( 2000; ). Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol 182, 3446–3451.[CrossRef]
    [Google Scholar]
  54. Rashid, M. H. & Kornberg, A. ( 2000; ). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97, 4885–4890.[CrossRef]
    [Google Scholar]
  55. Ravin, N. V., Rech, J. & Lane, D. ( 2003; ). Mapping of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. J Mol Biol 329, 875–889.[CrossRef]
    [Google Scholar]
  56. Reece, K. S. & Phillips, G. J. ( 1995; ). New plasmids carrying antibiotic-resistance cassettes. Gene 165, 141–142.[CrossRef]
    [Google Scholar]
  57. Saint-Dic, D., Frushour, B. P., Kehrl, J. H. & Kahng, L. S. ( 2006; ). A parA homolog selectively influences positioning of the large chromosome origin in Vibrio cholerae. J Bacteriol 188, 5626–5631.[CrossRef]
    [Google Scholar]
  58. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  59. Sharpe, M. E. & Errington, J. ( 1996; ). The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol Microbiol 21, 501–509.[CrossRef]
    [Google Scholar]
  60. Simon, R., O'Connell, M., Labes, M. & Puhler, A. ( 1986; ). Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol 118, 640–659.
    [Google Scholar]
  61. Spratt, B. G., Hedge, P. J., de Heesen, S., Edelman, A. & Broome-Smith, J. K. ( 1986; ). Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, EMBL8 and EMBL9. Gene 41, 337–342.[CrossRef]
    [Google Scholar]
  62. Surtees, J. A. & Funnell, B. E. ( 1999; ). P1 ParB domain structure includes two independent multimerization domains. J Bacteriol 181, 5898–5908.
    [Google Scholar]
  63. Yamaichi, Y. & Niki, H. ( 2000; ). Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc Natl Acad Sci U S A 97, 14656–14661.[CrossRef]
    [Google Scholar]
  64. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024661-0
Loading
/content/journal/micro/10.1099/mic.0.024661-0
Loading

Data & Media loading...

[ PDF] (70 kb) [ PDF] (430 kb): Properties of alleles Visualization of nucleoids and ParB in WT and mutant strains Properties of EGFP-ParB and EGFP-ParBΔ121-183 fusion proteins

PDF

[ PDF] (70 kb) [ PDF] (430 kb): Properties of alleles Visualization of nucleoids and ParB in WT and mutant strains Properties of EGFP-ParB and EGFP-ParBΔ121-183 fusion proteins

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error