1887

Abstract

The important human pathogen (the group A streptococcus or GAS) produces many virulence factors that are regulated by the two-component signal transduction system CovRS (CsrRS). Dissemination of GAS infection originating at the skin has been shown to require production of streptokinase, whose transcription is repressed by CovR. In this work we have studied the interaction of CovR and phosphorylated CovR (CovR-P) with the promoter for streptokinase, P. We found that, in contrast to the other CovR-repressed promoters, P regulation by CovR occurs through binding at a single ATTARA consensus binding sequence (CB) that overlaps the −10 region of the promoter. Binding of CovR to other nearby consensus sequences occurs upon phosphorylation of the protein, but these other CBs do not contribute to the regulation of P by CovR. Thus, binding at a specific site does not necessarily indicate that the site is involved in regulation by CovR. In addition, at P, CovR binding to the different sites does not appear to involve cooperative interactions, which simplifies the analysis of CovR binding and gives us insight into the modes of interaction that occur between CovR and its specific DNA-binding sites. Finally, the observation that regulation of transcription from P occurs at a very low concentration of phosphorylated CovR may have important implications for the regulation of virulence gene expression during GAS infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024620-0
2009-02-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/566.html?itemId=/content/journal/micro/10.1099/mic.0.024620-0&mimeType=html&fmt=ahah

References

  1. Ashbaugh, C. D., Moser, T. J., Shearer, M. H., White, G. L., Kennedy, R. C. & Wessels, M. R. ( 2000; ). Bacterial determinants of persistent throat colonization and the associated immune response in a primate model of human group A streptococcal pharyngeal infection. Cell Microbiol 2, 283–292.[CrossRef]
    [Google Scholar]
  2. Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y. & Zychlinsky, A. ( 2004; ). Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535.[CrossRef]
    [Google Scholar]
  3. Buchanan, J. T., Simpson, A. J., Aziz, R. K., Liu, G. Y., Kristian, S. A., Kotb, M., Feramisco, J. & Nizet, V. ( 2006; ). DNase expression allows the pathogen group A streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16, 396–400.[CrossRef]
    [Google Scholar]
  4. Churchward, G. ( 2007; ). The two faces of Janus: virulence gene regulation by CovR/S in group A streptococci. Mol Microbiol 64, 34–41.[CrossRef]
    [Google Scholar]
  5. Cole, J. N., McArthur, J. D., McKay, F. C., Sanderson-Smith, M. L., Cork, A. J., Ranson, M., Rohde, M., Itzek, A., Sun, H. & other authors ( 2006; ). Trigger for group A streptococcal M1T1 invasive disease. FASEB J 20, 1745–1747.[CrossRef]
    [Google Scholar]
  6. Collin, M. & Olsen, A. ( 2001; ). Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun 69, 7187–7189.[CrossRef]
    [Google Scholar]
  7. Cunningham, M. W. ( 2000; ). Pathogenesis of Group A streptococcal infection. Clin Microbiol Rev 13, 470–511.[CrossRef]
    [Google Scholar]
  8. Dalton, T. L. & Scott, J. R. ( 2004; ). CovS inactivates CovR and is required for growth under conditions of general stress in Streptococcus pyogenes. J Bacteriol 186, 3928–3937.[CrossRef]
    [Google Scholar]
  9. Dalton, T. L., Collins, J. T., Barnett, T. C. & Scott, J. R. ( 2006; ). RscA, a member of the MDR1 family of transporters, is repressed by CovR and required for growth of Streptococcus pyogenes under heat stress. J Bacteriol 188, 77–85.[CrossRef]
    [Google Scholar]
  10. Federle, M. J. & Scott, J. R. ( 2002; ). Identification of binding sites for the group A streptococcal global regulator CovR. Mol Microbiol 43, 1161–1172.[CrossRef]
    [Google Scholar]
  11. Federle, M. J., McIver, K. S. & Scott, J. R. ( 1999; ). A response regulator that represses transcription of several virulence operons in the group A streptococcus. J Bacteriol 181, 3649–3657.
    [Google Scholar]
  12. Frank, C., Steiner, K. & Malke, H. ( 1995; ). Conservation of the organization of the streptokinase gene region among pathogenic streptococci. Med Microbiol Immunol 184, 139–146.
    [Google Scholar]
  13. Gao, J., Gusa, A. A., Scott, J. R. & Churchward, G. ( 2005; ). Binding of the global response regulator protein CovR to the sag promoter of Streptococcus pyogenes reveals a new mode of CovR-DNA interaction. J Biol Chem 280, 38948–38956.[CrossRef]
    [Google Scholar]
  14. Gase, K., Ellinger, T. & Malke, H. ( 1995; ). Complex transcriptional control of the streptokinase gene of Streptococcus equisimilis H46A. Mol Gen Genet 247, 749–758.[CrossRef]
    [Google Scholar]
  15. Geist, R. T., Okada, N. & Caparon, M. G. ( 1993; ). Analysis of Streptococcus pyogenes promoters by using novel Tn916-based shuttle vectors for the construction of transcriptional fusions to chloramphenicol acetyltransferase. J Bacteriol 175, 7561–7570.
    [Google Scholar]
  16. Graham, M. R., Smoot, L. M., Migliaccio, C. A., Virtaneva, K., Sturdevant, D. E., Porcella, S. F., Federle, M. J., Adams, G. J., Scott, J. R. & Musser, J. M. ( 2002; ). Virulence control in group A streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99, 13855–13860.[CrossRef]
    [Google Scholar]
  17. Graham, M. R., Virtaneva, K., Porcella, S. F., Barry, W. T., Gowen, B. B., Johnson, C. R., Wright, F. A. & Musser, J. M. ( 2005; ). Group A streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. Am J Pathol 166, 455–465.[CrossRef]
    [Google Scholar]
  18. Graham, M. R., Virtaneva, K., Porcella, S. F., Gardner, D. J., Long, R. D., Welty, D. M., Barry, W. T., Johnson, C. A., Parkins, L. D. & other authors ( 2006; ). Analysis of the transcriptome of group A streptococcus in mouse soft tissue infection. Am J Pathol 169, 927–942.[CrossRef]
    [Google Scholar]
  19. Gusa, A. A. & Scott, J. R. ( 2005; ). The CovR response regulator of group A streptococcus (GAS) acts directly to repress its own promoter. Mol Microbiol 56, 1195–1207.[CrossRef]
    [Google Scholar]
  20. Gusa, A. A., Gao, J., Stringer, V., Churchward, G. & Scott, J. R. ( 2006; ). Phosphorylation of the group A streptococcal CovR response regulator causes dimerization and promoter-specific recruitment by RNA polymerase. J Bacteriol 188, 4620–4626.[CrossRef]
    [Google Scholar]
  21. Heath, A., DiRita, V. J., Barg, N. L. & Engleberg, N. C. ( 1999; ). A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect Immun 67, 5298–5305.
    [Google Scholar]
  22. Husmann, L. K., Yung, D. L., Hollingshead, S. K. & Scott, J. R. ( 1997; ). Role of putative virulence factors of Streptococcus pyogenes in mouse models of long-term throat colonization and pneumonia. Infect Immun 65, 1422–1430.
    [Google Scholar]
  23. Kreikemeyer, B., Boyle, M. D., Buttaro, B. A., Heinemann, M. & Podbielski, A. ( 2001; ). Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol Microbiol 39, 392–406.[CrossRef]
    [Google Scholar]
  24. Kwinn, L. A. & Nizet, V. ( 2007; ). How group A streptococcus circumvents host phagocyte defenses. Future Microbiol 2, 75–84.[CrossRef]
    [Google Scholar]
  25. Laub, M. T. & Goulian, M. ( 2007; ). Specificity in two-component signal transduction pathways. Annu Rev Genet 41, 121–145.[CrossRef]
    [Google Scholar]
  26. Levin, J. C. & Wessels, M. R. ( 1998; ). Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A streptococcus. Mol Microbiol 30, 209–219.[CrossRef]
    [Google Scholar]
  27. Malke, H., Steiner, K., Gase, K. & Frank, C. ( 2000; ). Expression and regulation of the streptokinase gene. Methods 21, 111–124.[CrossRef]
    [Google Scholar]
  28. Martinez-Hackert, E. & Stock, A. M. ( 1997; ). The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 5, 109–124.[CrossRef]
    [Google Scholar]
  29. Miller, A. A., Engleberg, N. C. & DiRita, V. J. ( 2001; ). Repression of virulence genes by phosphorylation-dependent oligomerization of CsrR at target promoters in S. pyogenes. Mol Microbiol 40, 976–990.[CrossRef]
    [Google Scholar]
  30. Munson, G. P. & Scott, J. R. ( 1999; ). Binding site recognition by Rns, a virulence regulator in the AraC family. J Bacteriol 181, 2110–2117.
    [Google Scholar]
  31. Musser, J. M. & DeLeo, F. R. ( 2005; ). Toward a genome-wide systems biology analysis of host-pathogen interactions in group A streptococcus. Am J Pathol 167, 1461–1472.[CrossRef]
    [Google Scholar]
  32. Nordstrand, A., McShan, W. M., Ferretti, J. J., Holm, S. E. & Norgren, M. ( 2000; ). Allele substitution of the streptokinase gene reduces the nephritogenic capacity of group A streptococcal strain NZ131. Infect Immun 68, 1019–1025.[CrossRef]
    [Google Scholar]
  33. Opdyke, J. A., Scott, J. R. & Moran, C. P., Jr ( 2001; ). A secondary RNA polymerase sigma factor from Streptococcus pyogenes. Mol Microbiol 42, 495–502.[CrossRef]
    [Google Scholar]
  34. Rhee, J. E., Sheng, W., Morgan, L. K., Nolet, R., Liao, X. & Kenney, L. J. ( 2008; ). Amino acids important for DNA recognition by the response regulator OmpR. J Biol Chem 283, 8664–8677.[CrossRef]
    [Google Scholar]
  35. Roberts, S. A. & Scott, J. R. ( 2007; ). RivR and the small RNA RivX: the missing links between the CovR regulatory cascade and the Mga regulon. Mol Microbiol 66, 1506–1522.
    [Google Scholar]
  36. Roberts, S. A., Churchward, G. G. & Scott, J. R. ( 2007; ). Unraveling the regulatory network in Streptococcus pyogenes: the global response regulator CovR represses rivR directly. J Bacteriol 189, 1459–1463.[CrossRef]
    [Google Scholar]
  37. Salim, K. Y., de Azavedo, J. C., Bast, D. J. & Cvitkovitch, D. G. ( 2007; ). Role for sagA and siaA in quorum sensing and iron regulation in Streptococcus pyogenes. Infect Immun 75, 5011–5017.[CrossRef]
    [Google Scholar]
  38. Scott, J. R. ( 1972; ). A new gene controlling lysogeny in phage P1. Virology 48, 282–283.[CrossRef]
    [Google Scholar]
  39. Scott, J. R., Guenthner, P. C., Malone, L. M. & Fischetti, V. A. ( 1986; ). Conversion of an M− group A streptococcus to M+ by transfer of a plasmid containing an M6 gene. J Exp Med 164, 1641–1651.[CrossRef]
    [Google Scholar]
  40. Stock, A. M., Robinson, V. L. & Goudreau, P. N. ( 2000; ). Two-component signal transduction. Annu Rev Biochem 69, 183–215.[CrossRef]
    [Google Scholar]
  41. Sumby, P., Barbian, K. D., Gardner, D. J., Whitney, A. R., Welty, D. M., Long, R. D., Bailey, J. R., Parnell, M. J., Hoe, N. P. & other authors ( 2005; ). Extracellular deoxyribonuclease made by group A streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci U S A 102, 1679–1684.[CrossRef]
    [Google Scholar]
  42. Sumby, P., Whitney, A. R., Graviss, E. A., DeLeo, F. R. & Musser, J. M. ( 2006; ). Genome-wide analysis of group A streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog 2, e5 [CrossRef]
    [Google Scholar]
  43. Sun, H., Ringdahl, U., Homeister, J. W., Fay, W. P., Engleberg, N. C., Yang, A. Y., Rozek, L. S., Wang, X., Sjöbring, U. & Ginsburg, D. ( 2004; ). Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305, 1283–1286.[CrossRef]
    [Google Scholar]
  44. Tart, A. H., Walker, M. J. & Musser, J. M. ( 2007; ). New understanding of the group A streptococcus pathogenesis cycle. Trends Microbiol 15, 318–325.[CrossRef]
    [Google Scholar]
  45. Virtaneva, K., Porcella, S. F., Graham, M. R., Ireland, R. M., Johnson, C. A., Ricklefs, S. M., Babar, I., Parkins, L. D., Romero, R. A. & other authors ( 2005; ). Longitudinal analysis of the group A streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques. Proc Natl Acad Sci U S A 102, 9014–9019.[CrossRef]
    [Google Scholar]
  46. Walker, M. J., Hollands, A., Sanderson-Smith, M. L., Cole, J. N., Kirk, J. K., Henningham, A., McArthur, J. D., Dinkla, K., Aziz, R. K. & other authors ( 2007; ). DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13, 981–985.[CrossRef]
    [Google Scholar]
  47. Wessels, M. R. & Bronze, M. S. ( 1994; ). Critical role of the group A streptococcal capsule in pharyngeal colonization and infection in mice. Proc Natl Acad Sci U S A 91, 12238–12242.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024620-0
Loading
/content/journal/micro/10.1099/mic.0.024620-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 566 - 575

Oligonucleotide primers [ PDF] (10 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error