The outer-surface protein ErpX binds mammalian laminin Free

Abstract

The Lyme disease spirochaete, , can invade and persistently infect its hosts' connective tissues. We now demonstrate that adheres to the extracellular matrix component laminin. The surface-exposed outer-membrane protein ErpX was identified as having affinity for laminin, and is the first laminin-binding protein to be identified in a Lyme disease spirochaete. The adhesive domain of ErpX was shown to be contained within a small, unstructured hydrophilic segment at the protein's centre. The sequence of that domain is distinct from any previously identified bacterial laminin adhesin, suggesting a unique mode of laminin binding.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024604-0
2009-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/863.html?itemId=/content/journal/micro/10.1099/mic.0.024604-0&mimeType=html&fmt=ahah

References

  1. Akins D. R., Caimano M. J., Yang X., Cerna F., Norgard M. V., Radolf J. D. 1999; Molecular and evolutionary analysis of Borrelia burgdorferi 297 circular plasmid-encoded lipoproteins with OspE- and OspF-like leader peptides. Infect Immun 67:1526–1532
    [Google Scholar]
  2. Alitalo A., Meri T., Lankinen H., Seppälä I., Lahdenne P., Hefty P. S., Akins D., Meri S. 2002; Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs. J Immunol 169:3847–3853
    [Google Scholar]
  3. Antonara S., Chafel R. M., LaFrance M., Coburn J. 2007; Borrelia burgdorferi adhesins identified using in vivo phage display. Mol Microbiol 66:262–276
    [Google Scholar]
  4. Balmelli T., Piffaretti J. C. 1995; Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res Microbiol 146:329–340
    [Google Scholar]
  5. Barbosa A. S., Abreu P. A. E., Neves F. O., Atzingen M. V., Watanabe M. M., Vieira M. L., Morais Z. M., Vasconcellos S. A., Nascimentao A. L. T. O. 2006; A newly identified leptospiral adhesin mediates attachment to laminin. Infect Immun 74:6356–6364
    [Google Scholar]
  6. Barthold S. W., Persing D. H., Armstrong A. L., Peeples R. A. 1991; Kinetics of Borrelia burgdorferi dissemination and evolution of disease after intradermal inoculation of mice. Am J Pathol 139:263–273
    [Google Scholar]
  7. Barthold S. W., de Souza M., Fikrig E., Persing D. H. 1992a; Lyme borreliosis in the laboratory mouse. In Lyme Disease: Molecular and Immunologic Approaches pp 223–242 Edited by Schutzer S. E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  8. Barthold S. W., Sidman C. L., Smith A. L. 1992b; Lyme borreliosis in genetically resistant and susceptible mice with severe combined immunodeficiency. Am J Trop Med Hyg 47:605–613
    [Google Scholar]
  9. Barthold S. W., de Souza M. S., Janotka J. L., Smith A. L., Persing D. H. 1993; Chronic Lyme borreliosis in the laboratory mouse. Am J Pathol 143:959–972
    [Google Scholar]
  10. Brissette C. A., Haupt K., Barthel D., Cooley A. E., Bowman A., Skerka C., Wallich R., Zipfel P. F., Kraiczy P., Stevenson B. 2009; The Borrelia burgdorferi infection-associated surface proteins ErpP, ErpA, and ErpC bind human plasminogen. Infect Immun 77:300–306
    [Google Scholar]
  11. Bunikis J., Garpmo U., Tsao J., Berglund J., Fish D., Barbour A. G. 2004; Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology 150:1741–1755
    [Google Scholar]
  12. Cabello F. C., Godfrey H. P., Newman S. A. 2007; Hidden in plain site: Borrelia burgdorferi and the extracellular matrix. Trends Microbiol 15:350–354
    [Google Scholar]
  13. Cadavid D., Bai Y., Dail D., Hurd M., Narayan K., Hodzic E., Barthold S. W., Pachner A. R. 2003; Infection and inflammation in skeletal muscle from nonhuman primates infected with different genospecies of the Lyme disease spirochete Borrelia burgdorferi . Infect Immun 71:7087–7098
    [Google Scholar]
  14. Cameron C. E. 2003; Identification of a Treponema pallidum laminin-binding protein. Infect Immun 71:2525–2533
    [Google Scholar]
  15. Cameron C. E., Brouwer N. L., Tisch L. M., Kurioiwa J. M. Y. 2005; Defining the interaction of the Treponema pallidum adhesin Tp0751 with laminin. Infect Immun 73:7485–7494
    [Google Scholar]
  16. Casjens S., van Vugt R., Tilly K., Rosa P. A., Stevenson B. 1997; Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes. J Bacteriol 179:217–227
    [Google Scholar]
  17. Casjens S., Palmer N., van Vugt R., Huang W. M., Stevenson B., Rosa P., Lathigra R., Sutton G., Peterson J. other authors 2000; A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs of an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi . Mol Microbiol 35:490–516
    [Google Scholar]
  18. Casjens S. R., Huang W. M., Gilcrease E. B., Qiu W., McCaig W. D., Luft B. J., Schutzer S. E., Fraser C. M. 2006; Comparative genomics of Borrelia burgdorferi . In Molecular Biology of Spirochetes pp 79–95 Edited by Cabello F. C., Hulinska D., Godfrey H. P. Amsterdam: IOS Press;
    [Google Scholar]
  19. Colognato H., Yurchenco P. D. 2000; Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234
    [Google Scholar]
  20. Crother T. R., Champion C. I., Whitelegge J. P., Aguilera R., Wu X. Y., Blanco D. R., Miller J. N., Lovett M. A. 2004; Temporal analysis of the antigenic composition of Borrelia burgdorferi during infection in rabbit skin. Infect Immun 72:5063–5072
    [Google Scholar]
  21. Cunningham T. M., Thomas D. D., Thompson S. D., Miller J. N., Lovett M. A. 1988; Identification of Borrelia burgdorferi surface components by Triton X-114 phase partitioning. Ann N Y Acad Sci 539:376–378
    [Google Scholar]
  22. Das S., Barthold S. W., Stocker Giles S., Montgomery R. R., Telford S. R., Fikrig E. 1997; Temporal pattern of Borrelia burgdorferi p21 expression in ticks and the mammalian host. J Clin Invest 99:987–995
    [Google Scholar]
  23. Defosse D. L., Duray P. H., Johnson R. C. 1992; The NIH-3 immunodeficient mouse is a model for Lyme borreliosis myositis and carditis. Am J Pathol 141:3–10
    [Google Scholar]
  24. De Koning J., Bosma R. B., Hoogkamp-Korstanje J. A. 1987; Demonstration of spirochaetes in patients with Lyme disease with a modified silver stain. J Med Microbiol 23:261–267
    [Google Scholar]
  25. Edwards A. M., Jenkinson H. F., Woodward M. J., Dymock D. 2005; Binding properties and adhesion-mediating regions of the major sheath protein of Treponema denticola ATCC 35405. Infect Immun 73:2891–2898
    [Google Scholar]
  26. El-Hage N., Stevenson B. 2002; Simultaneous coexpression of Borrelia burgdorferi Erp proteins occurs through a specific, erp locus-directed regulatory mechanism. J Bacteriol 184:4536–4543
    [Google Scholar]
  27. El-Hage N., Babb K., Carroll J. A., Lindstrom N., Fischer E. R., Miller J. C., Gilmore R. D. Jr, Mbow M. L., Stevenson B. 2001; Surface exposure and protease insensitivity of Borrelia burgdorferi Erp (OspEF-related) lipoproteins. Microbiology 147:821–830
    [Google Scholar]
  28. Fischer J. R., LeBlanc K. T., Leong J. M. 2006; Fibronectin binding protein BBK32 of the Lyme disease spirochete promotes bacterial attachment to glycosaminoglycans. Infect Immun 74:435–441
    [Google Scholar]
  29. Franz J. K., Fritze O., Rittig M., Keyßer G., Priem S., Zacher J., Burmester G. R., Krause A. 2001; Insights from a novel three-dimensional in vitro model of Lyme arthritis. Arthritis Rheum 44:151–162
    [Google Scholar]
  30. Fraser C. M., Casjens S., Huang W. M., Sutton G. G., Clayton R., Lathigra R., White O., Ketchum K. A., Dodson R. other authors 1997; Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi . Nature 390:580–586
    [Google Scholar]
  31. Freinkel R. K., Woodley D. T. 2001 The Biology of the Skin Pearl River, NY: Parthenon;
    [Google Scholar]
  32. Gilmore R. D. Jr, Mbow M. L., Stevenson B. 2001; Analysis of Borrelia burgdorferi gene expression during life cycle phases of the tick vector Ixodes scapularis . Microbes Infect 3:799–808
    [Google Scholar]
  33. Grab D. J., Givens C., Kennedy R. 1998; Fibronectin-binding activity in Borrelia burgdorferi . Biochim Biophys Acta 1407135–145
    [Google Scholar]
  34. Guo B. P., Norris S. J., Rosenberg L. C., Höök M. 1995; Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun 63:3467–3472
    [Google Scholar]
  35. Häupl T., Hahn G., Rittig M., Krause A., Schoerner C., Schonherr U., Kalden J. R., Burmester G. R. 1993; Persistence of Borrelia burgdorferi in ligamentous tissue from a patient with chronic Lyme borreliosis. Arthritis Rheum 36:1621–1626
    [Google Scholar]
  36. Haupt K., Kraiczy P., Wallich R., Brade V., Skerka C., Zipfel P. F. 2007; Binding of human FHR-1 to serum resistant Borrelia burgdorferi is mediated by borrelial complement regulator-acquiring surface proteins. J Infect Dis 196:124–133
    [Google Scholar]
  37. Hefty P. S., Jolliff S. E., Caimano M. J., Wikel S. K., Akins D. R. 2002; Changes in the temporal and spatial patterns of outer surface lipoprotein expression generate population heterogeneity and antigenic diversity in the Lyme disease spirochete, Borrelia burgdorferi . Infect Immun 70:3468–3478
    [Google Scholar]
  38. Hellwage J., Meri T., Heikkilä T., Alitalo A., Panelius J., Lahdenne P., Seppälä I. J. T., Meri S. 2001; The complement regulatory factor H binds to the surface protein OspE of Borrelia burgdorferi . J Biol Chem 276:8427–8435
    [Google Scholar]
  39. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagensis by overlap extension using polymerase chain reaction. Gene 77:51–59
    [Google Scholar]
  40. Johnson R. C., Schmid G. P., Hyde F. W., Steigerwalt A. G., Brenner D. J. 1984; Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int J Syst Bacteriol 34:496–497
    [Google Scholar]
  41. Kim J. H., Singvall J., Schwartz-Linek U., Johnson B. J. B., Potts J. R., Höök M. 2004; BBK32, a fibronectin binding MSCRAMM from Borrelia burgdorferi, contains a disordered region that undergoes a conformational change on ligand binding. J Biol Chem 279:41706–41714
    [Google Scholar]
  42. Kornblatt A. N., Steere A. C., Brownstein D. G. 1984; Experimental Lyme disease in rabbits: spirochetes found in erythema migrans and blood. Infect Immun 46:220–223
    [Google Scholar]
  43. Kraiczy P., Hellwage J., Skerka C., Kirschfink M., Brade V., Zipfel P. F., Wallich R. 2003; Immune evasion of Borrelia burgdorferi: mapping of a complement inhibitor factor H-binding site of BbCRASP-3, a novel member of the Erp protein family. Eur J Immunol 33:697–707
    [Google Scholar]
  44. Kraiczy P., Hartmann K., Hellwage J., Skerka C., Brade V., Zipfel P. F., Wallich R., Stevenson B. 2004; Immunological characterization of the complement regulator factor H-binding CRASP and Erp proteins of Borrelia burgdorferi . Int J Med Microbiol 293 :Suppl. 37152–157
    [Google Scholar]
  45. Kurtenbach K., Hanincova K., Tsao J. I., Margos G., Fish D., Ogden N. H. 2006; Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat Rev Microbiol 4:660–669
    [Google Scholar]
  46. Lam T. T., Nguyen T.-P. K., Montgomery R. R., Kantor F. S., Fikrig E., Flavell R. A. 1994; Outer surface proteins E and F of Borrelia burgdorferi, the agent of Lyme disease. Infect Immun 62:290–298
    [Google Scholar]
  47. Lane R. S., Piesman J., Burgdorfer W. 1991; Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu Rev Entomol 36:587–609
    [Google Scholar]
  48. Liang F. T., Nelson F. K., Fikrig E. 2002; Molecular adaptation of Borrelia burgdorferi in the murine host. J Exp Med 196:275–280
    [Google Scholar]
  49. Liveris D., Wang G., Girao G., Byrne D. W., Nowakowski J., McKenna D., Nadelman R., Wormser G. P., Schwartz I. 2002; Quantitiative detection of Borrelia burgdorferi in 2-millimeter skin samples of erythema migrans lesions: correlation of results with clinical and laboratory findings. J Clin Microbiol 40:1249–1253
    [Google Scholar]
  50. Lovett S. T. 2004; Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243–1253
    [Google Scholar]
  51. McDowell J. V., Sung S. Y., Price G., Marconi R. T. 2001; Demonstration of the genetic stability and temporal expression of select members of the Lyme disease spirochete OspF protein family during infection in mice. Infect Immun 69:4831–4838
    [Google Scholar]
  52. Metts M. S., McDowell J. V., Theisen M., Hansen P. R., Marconi R. T. 2003; Analysis of the OspE determinants involved in binding of factor H and OspE-targeting antibodies elicited during Borrelia burgdorferi infection. Infect Immun 71:3587–3596
    [Google Scholar]
  53. Miller J. C., Stevenson B. 2006; Borrelia burgdorferi erp genes are expressed at different levels within tissues of chronically infected mammalian hosts. Int J Med Microbiol 296 :Suppl. 1185–194
    [Google Scholar]
  54. Miller J. C., von Lackum K., Babb K., McAlister J. D., Stevenson B. 2003; Temporal analysis of Borrelia burgdorferi Erp protein expression throughout the mammal-tick infectious cycle. Infect Immun 71:6943–6952
    [Google Scholar]
  55. Miller J. C., Narayan K., Stevenson B., Pachner A. R. 2005; Expression of Borrelia burgdorferi erp genes during infection of non-human primates. Microb Pathog 39:27–33
    [Google Scholar]
  56. Miller J. C., von Lackum K., Woodman M. E., Stevenson B. 2006; Detection of Borrelia burgdorferi gene expression during mammalian infection using transcriptional fusions that produce green fluorescent protein. Microb Pathog 41:43–47
    [Google Scholar]
  57. Pachner A. R., Basta J., Delaney E., Hulinska D. 1995; Localization of Borrelia burgdorferi in murine Lyme borreliosis by electron microscopy. Am J Trop Med Hyg 52:128–133
    [Google Scholar]
  58. Patti J. M., Allen B. L., McGavin M. J., Höök M. 1994; MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617
    [Google Scholar]
  59. Probert W. S., Johnson B. J. B. 1998; Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 30:1003–1015
    [Google Scholar]
  60. Pryde J. G. 1986; Triton X-114: a detergent that has come in from the cold. Trends Biochem Sci 11:160–163
    [Google Scholar]
  61. Purser J. E., Norris S. J. 2000; Correlation between plasmid content and infectivity in Borrelia burgdorferi . Proc Natl Acad Sci U S A 97:13865–13870
    [Google Scholar]
  62. Radolf J. D., Chamberlain N. R., Clausell A., Norgard M. V. 1988; Identification and localization of integral membrane proteins of virulent Treponema pallidum subsp. pallidum by phase partitioning with the nonionic detergent Triton X-114. Infect Immun 56:490–498
    [Google Scholar]
  63. Sasaki T., Fässler R., Hohenester E. 2004; Laminin: the crux of basement membrane assembly. J Cell Biol 164:959–963
    [Google Scholar]
  64. Seinost G., Dykhuizen D. E., Dattwyler R. J., Golde W. T., Dunn J. J., Wang I. N., Wormser G. P., Schriefer M. E., Luft B. J. 1999; Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun 67:3518–3524
    [Google Scholar]
  65. Shih C.-M., Pollack R. J., Telford S. R., Spielman A. 1992; Delayed dissemination of Lyme disease spirochetes from the site of deposition in the skin of mice. J Infect Dis 166:827–831
    [Google Scholar]
  66. Skare J. T., Foley D. M., Hernandez S. R., Moore D. C., Blanco D. R., Miller J. N., Lovett M. A. 1999; Cloning and molecular characterization of plasmid-encoded antigens of Borrelia burgdorferi . Infect Immun 67:4407–4417
    [Google Scholar]
  67. Stevenson B., Miller J. C. 2003; Intra- and interbacterial genetic exchange of Lyme disease spirochete erp genes generates sequence identity amidst diversity. J Mol Evol 57:309–324
    [Google Scholar]
  68. Stevenson B., Tilly K., Rosa P. A. 1996; A family of genes located on four separate 32-kilobase circular plasmids in Borrelia burgdorferi B31. J Bacteriol 178:3508–3516
    [Google Scholar]
  69. Stevenson B., Bono J. L., Schwan T. G., Rosa P. 1998; Borrelia burgdorferi Erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria. Infect Immun 66:2648–2654
    [Google Scholar]
  70. Stevenson B., Zückert W. R., Akins D. R. 2001; Repetition, conservation, and variation: the multiple cp32 plasmids of Borrelia species. In The Spirochetes: Molecular and Cellular Biology pp 87–100 Edited by Saier M. H., García-Lara J. Oxford: Horizon Press;
    [Google Scholar]
  71. Stevenson B., El-Hage N., Hines M. A., Miller J. C., Babb K. 2002; Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect Immun 70:491–497
    [Google Scholar]
  72. Stevenson B., Bykowski T., Cooley A. E., Babb K., Miller J. C., Woodman M. E., von Lackum K., Riley S. P. 2006; The Lyme disease spirochete Erp lipoprotein family: structure, function and regulation of expression. In Molecular Biology of Spirochetes pp 354–372 Edited by Cabello F. C., Godfrey H. P., Hulinska D. Amsterdam: IOS Press;
    [Google Scholar]
  73. Stevenson B., Choy H. A., Pinne M., Rotondi M. L., Miller M. C., DeMoll E., Kraiczy P., Cooley A. E., Creamer T. P. other authors 2007; Leptospira interrogans endostatin-like outer membrane proteins bind host fibronectin, laminin and regulators of complement. PLoS One 2:e1188
    [Google Scholar]
  74. Terekhova D., Iyer R., Wormser G. P., Schwartz I. 2006; Comparative genome hybridization reveals substantial variation among clinical isolates of Borrelia burgdorferi sensu stricto with different pathogenic properties. J Bacteriol 188:6124–6134
    [Google Scholar]
  75. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analyses tools. Nucleic Acids Res 25:4876–4882
    [Google Scholar]
  76. van Belkum A. 1999; Short sequence repeats in microbial pathogenesis and evolution. Cell Mol Life Sci 56:729–734
    [Google Scholar]
  77. van Dam A.P., Kuiper H., Vos K., Widjojokusumo A., de Jongh B. M., Spanjaard L., Ramselaar A. C. P., Kramer M. D., Dankert J. 1993; Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 17:708–717
    [Google Scholar]
  78. Wang G., Ojaimi C., Iyer R., Saksenberg V., McClain S. A., Wormser G. P., Schwartz I. A. 2001; Impact of genotypic variation of Borrelia burgdorferi sensu stricto on kinetics of dissemination and severity of disease in C3H/HeJ mice. Infect Immun 69:4303–4312
    [Google Scholar]
  79. Wang G., Ojaimi C., Wu H., Saksenberg V., Iyer R., Liveris D., McClain S. A., Wormser G. P., Schwartz I. 2002; Disease severity in a murine model of Lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. J Infect Dis 186:782–791
    [Google Scholar]
  80. Zambrano M. C., Beklemisheva A. A., Bryskin A. V., Newman S. A., Cabello P. C. 2004; Borrelia burgdorferi binds to, invades, and colonizes native type I collagen lattices. Infect Immun 72:3138–3146
    [Google Scholar]
  81. Zückert W. R. 2007; Laboratory maintenance of Borrelia burgdorferi . In Current Protocols in Microbiology pp 12C.11.11–12C.11.10 Edited by Coico R. T., Kowalik T. F., Quarles J., Stevenson B, Taylor R. Hoboken, NJ: Wiley;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024604-0
Loading
/content/journal/micro/10.1099/mic.0.024604-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed