1887

Abstract

is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. PhoP-PhoQ is a two-component regulatory system that has been identified as essential for virulence and cationic antimicrobial peptide resistance in several other Gram-negative bacteria. This study demonstrated that mutation of caused reduced twitching motility, biofilm formation and rapid attachment to surfaces, 2.2-fold reduced cytotoxicity to human lung epithelial cells, substantially reduced lettuce leaf virulence, and a major, 10 000-fold reduction in competitiveness in chronic rat lung infections. Microarray analysis revealed that PhoQ controlled the expression of many genes consistent with these phenotypes and with its known role in polymyxin B resistance. It was also demonstrated that PhoQ controls the expression of many genes outside the known PhoP regulon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024554-0
2009-03-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/699.html?itemId=/content/journal/micro/10.1099/mic.0.024554-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M.. 1987; Current Protocols in Molecular Biology New York: Green Publishing Associates and Wilely-Interscience;
    [Google Scholar]
  2. Bader M. W., Sanowar S., Daley M. E., Schneider A. R., Cho U., Xu W., Klevit R. E., Le Moual H., Miller S. I.. 2005; Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell122:461–472
    [Google Scholar]
  3. Baysse C., Budzikiewicz H., Uría Fernández D., Cornelis P.. 2002; Impaired maturation of the siderophore pyoverdine chromophore in Pseudomonas fluorescens ATCC 17400 deficient for the cytochrome c biogenesis protein CcmC. FEBS Lett523:23–28
    [Google Scholar]
  4. Belete B., Lu H., Wozniak D. J.. 2008; Pseudomonas aeruginosa AlgR regulates type IV pilus biosynthesis by activating transcription of the fimU-pilVWXY1Y2E operon. J Bacteriol190:2023–2030
    [Google Scholar]
  5. Boyer E., Bergevin I., Malo D., Gros P., Cellier M. F.. 2002; Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar typhimurium. Infect Immun70:6032–6042
    [Google Scholar]
  6. Brinkman F. S., Macfarlane E. L., Warrener P., Hancock R. E. W.. 2001; Evolutionary relationships among virulence-associated histidine kinases. Infect Immun69:5207–5211
    [Google Scholar]
  7. Cash H. A., Woods D. E., McCullough B., Johanson W. G. Jr, Bass J. A.. 1979; A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis119:453–459
    [Google Scholar]
  8. Cozens A. L., Yezzi M. J., Kunzelmann K., Ohrui T., Chin L., Eng K., Finkbeiner W. E., Widdicombe J. H., Gruenert D. C.. 1994; CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol10:38–47
    [Google Scholar]
  9. Ernst R. K., Yi E. C., Guo L., Lim Kheng B., Burns J. L., Hackett M., Millar S. I.. 1999; Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science286:1561–1565
    [Google Scholar]
  10. Filiatrault M. J., Picardo K. F., Ngai H., Passador L., Iglewski B. H.. 2006; Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth. Infect Immun74:4237–4245
    [Google Scholar]
  11. Firoved A. M., Deretic V.. 2003; Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol185:1071–1081
    [Google Scholar]
  12. Flato S., Hemminki K., Thunberg E., Georgellis A.. 1996; DNA adduct formation in the human nasal mucosa as a biomarker of exposure to environmental mutagens and carcinogens. Environ Health Perspect104:471–473
    [Google Scholar]
  13. Furutani T., Su R., Ooshima H., Kato J.. 1995; Simple screening method for lipase for transesterification in organic solvent. Enzyme Microb Technol17:1067–1072
    [Google Scholar]
  14. Garcia-Medina R., Dunne W. M., Singh P. K., Brody S. L.. 2005; Pseudomonas aeruginosa acquires biofilm-like properties within airway epithelial cells. Infect Immun73:8298–8305
    [Google Scholar]
  15. Gooderham W. J., Hancock R. E.. 2009; Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev in press [CrossRef]
    [Google Scholar]
  16. Grabenstein J. P., Marceau M., Pujol C., Simonet M., Bliska J. B.. 2004; The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence. Infect Immun72:4973–4984
    [Google Scholar]
  17. Groisman E. A.. 2001; The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol183:1835–1842
    [Google Scholar]
  18. Gunn J. S., Ryan S. S., Van Velkinburgh J. C., Ernst R. K., Miller S. I.. 2000; Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect Immun68:6139–6146
    [Google Scholar]
  19. Hahn H. P.. 1997; The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa – a review. Gene192:99–108
    [Google Scholar]
  20. Hava D. L., Camilli A.. 2002; Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol45:1389–1406
    [Google Scholar]
  21. Heurlier K., Williams F., Heeb S., Dormond C., Pessi G., Singer D., Camara M., Williams P., Haas D.. 2004; Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol186:2936–2945
    [Google Scholar]
  22. Kammler M., Schon C., Hantke K.. 1993; Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol175:6212–6219
    [Google Scholar]
  23. Kipnis E., Sawa T., Wiener-Kronish J.. 2006; Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect36:78–91
    [Google Scholar]
  24. Lehoux D. E., Sanschagrin F., Levesque R. C.. 2000; Genomics of the 35-kb pvd locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. FEMS Microbiol Lett190:141–146
    [Google Scholar]
  25. Lewenza S., Falsafi R. K., Winsor G., Gooderham W. J., McPhee J. B., Brinkman F. S. L., Hancock R. E. W.. 2005; Construction of a mini-Tn 5- luxCDABE mutant library in Pseudomonas aeruginosa PAO1: a tool for identifying differentially regulated genes. Genome Res15:583–589
    [Google Scholar]
  26. Lizewski S. E., Lundberg D. S., Schurr M. J.. 2002; The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun70:6083–6093
    [Google Scholar]
  27. Macfarlane E. L. A., Kwasnicka A., Ochs M. M., Hancock R. E. W.. 1999; PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol34:305
    [Google Scholar]
  28. Macfarlane E. L., Kwasnicka A., Hancock R. E. W.. 2000; Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology146:2543–2554
    [Google Scholar]
  29. Marceau M., Sebbane F., Ewann F., Collyn F., Lindner B., Campos M. A., Bengoechea J. A., Simonet M.. 2004; The pmrF polymyxin-resistance operon of Yersinia pseudotuberculosis is upregulated by the PhoP-PhoQ two-component system but not by PmrA-PmrB, and is not required for virulence. Microbiology150:3947–3957
    [Google Scholar]
  30. Marlovits T. C., Haase W., Herrmann C., Aller S. G., Unger V. M.. 2002; The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria. Proc Natl Acad Sci U S A99:16243–16248
    [Google Scholar]
  31. Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S.. 2001; Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol183:6454–6465
    [Google Scholar]
  32. McPhee J. B., Lewenza S., Hancock R. E. W.. 2003; Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol50:205–217
    [Google Scholar]
  33. McPhee J. B., Bains M., Winsor G., Lewenza S., Kwasnicka A., Brazas M. D., Brinkman F. S., Hancock R. E.. 2006; Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol188:3995–4006
    [Google Scholar]
  34. Miller S. I., Kukral A. M., Mekalanos J. J.. 1989; A two-component regulatory system ( phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A86:5054–5058
    [Google Scholar]
  35. Mirleau P., Delorme S., Philippot L., Meyer J., Mazurier S., Lemanceau P.. 2000; Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol Ecol34:35–44
    [Google Scholar]
  36. Moskowitz S. M., Ernst R. K., Miller S. I.. 2004; PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol186:575–579
    [Google Scholar]
  37. O'May C. Y., Reid D. W., Kirov S. M.. 2006; Anaerobic culture conditions favor biofilm-like phenotypes in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. FEMS Immunol Med Microbiol48:373–380
    [Google Scholar]
  38. O'Toole G. A., Kolter R.. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304
    [Google Scholar]
  39. Overhage J., Lewenza S., Marr A. K., Hancock R. E. W.. 2007; Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5- lux mutant library. J Bacteriol189:2164–2169
    [Google Scholar]
  40. Prost L. R., Miller S. I.. 2008; The salmonellae PhoQ sensor: mechanisms of detection of phagosome signals. Cell Microbiol10:576–582
    [Google Scholar]
  41. Prost L. R., Daley M. E., Bader M. W., Klevit R. E., Miller S. I.. 2008; The PhoQ histidine kinases of Salmonella and Pseudomonas spp. are structurally and functionally different: evidence that pH and antimicrobial peptide sensing contribute to mammalian pathogenesis. Mol Microbiol69:503–519
    [Google Scholar]
  42. Pruitt B. A., McManus A. T., Kim S. H., Goodwin C. W.. 1998; Burn wound infections: current status. World J Surg22:135
    [Google Scholar]
  43. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M.. 1995; Common virulence factors for bacterial pathogenicity in plants and animals. Science268:1899–1902
    [Google Scholar]
  44. Rahme L. G., Tan M., Le L., Wong S. M., Tompkins R. G., Calderwood S. B., Ausubel F. M.. 1997; Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A94:13245–13250
    [Google Scholar]
  45. Rahme L. G., Ausubel F. M., Cao H., Drenkard E., Goumnerov B. C., Lau G. W., Mahajan-Miklos S., Plotnikova J., Tani M.. other authors 2000; Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A97:8815
    [Google Scholar]
  46. Ramsey M. M., Whiteley M.. 2004; Pseudomonas aeruginosa attachment and biofilm development in dynamic environments. Mol Microbiol53:1075–1087
    [Google Scholar]
  47. Rodrigue A., Quentin Y., Lazdunski A., Mejean V., Foglino M.. 2000; Two-component systems in Pseudomonas aeruginosa: why so many?. Trends Microbiol8:498–504
    [Google Scholar]
  48. Sadikot R. T., Blackwell T. S., Christman J. W., Prince A. S.. 2005; Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med171:1209–1223
    [Google Scholar]
  49. Schweizer H. P.. 1991; Escherichia–Pseudomonas shuttle vectors derived from pUC18/19. Gene97:109–112
    [Google Scholar]
  50. Shin D., Lee E. J., Huang H., Groisman E. A.. 2006; A positive feedback loop promotes transcription surge that jump-starts Salmonella virulence circuit. Science314:1607–1609
    [Google Scholar]
  51. van Heeckeren A. M., Schluchter M. D.. 2002; Murine models of chronic Pseudomonas aeruginosa lung infection. Lab Anim36:291–312
    [Google Scholar]
  52. Velayudhan J., Hughes N. J., McColm A. A., Bagshaw J., Clayton C. L., Andrews S. C., Kelly D. J.. 2000; Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol37:274–286
    [Google Scholar]
  53. Whooley M. A., McLoughlin A. J.. 1982; The regulation of pyoverdine production in Pseudomonas aeruginosa. Eur J Appl Microbiol Biotechnol15:161–166
    [Google Scholar]
  54. Winfield M. D., Latifi T., Groisman E. A.. 2005; Transcriptional regulation of the 4-amino-4-deoxy-l-arabinose biosynthetic genes in Yersinia pestis. J Biol Chem280:14765–14772
    [Google Scholar]
  55. Wu M., Hancock R. E. W.. 1999; Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J Biol Chem274:29–35
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024554-0
Loading
/content/journal/micro/10.1099/mic.0.024554-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error