1887

Abstract

Expression of the flagellar genes in is dependent on one of the four sigma-54 factors present in this bacterium and on the enhancer binding proteins (EBPs) FleQ and FleT. These proteins, in contrast to other well-characterized EBPs, carry out activation as a hetero-oligomeric complex. To further characterize the molecular properties of this complex we mapped the binding sites or upstream activation sequences (UASs) of six different flagellar promoters. In most cases the UASs were identified at approximately 100 bp upstream from the promoter. However, the activity of the divergent promoters -, which are separated by only 53 bp, is mainly dependent on a UAS located approximately 200 bp downstream from each promoter. Interestingly, a significant amount of activation mediated by the upstream or contralateral UAS was also detected, suggesting that the architecture of this region is important for the correct regulation of these promoters. Sequence analysis of the regions carrying the potential FleQ/FleT binding sites revealed a conserved motif. footprinting experiments with the promoter allowed us to identify a protected region that overlaps with this motif. These results allow us to propose a consensus sequence that represents the binding site of the FleQ/FleT activating complex.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024455-0
2009-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1669.html?itemId=/content/journal/micro/10.1099/mic.0.024455-0&mimeType=html&fmt=ahah

References

  1. Atkinson M. R., Pattaramanon N., Ninfa A. J. 2002; Governor of the glnAp2 promoter of Escherichia coli . Mol Microbiol 46:1247–1257
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley Interscience;
  3. Bailey T. L., Elkan C. 1994; Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36
    [Google Scholar]
  4. Barrios H., Valderrama B., Morett E. 1999; Compilation and analysis of σ 54-dependent promoter sequences. Nucleic Acids Res 27:4305–4313
    [Google Scholar]
  5. Beck L. L., Smith T. G., Hoover T. R. 2007; Look, no hands! Unconventional transcriptional activators in bacteria. Trends Microbiol 15:530–537
    [Google Scholar]
  6. Beynon J., Cannon M., Buchanan-Wollaston V., Cannon F. 1983; The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell 34:665–671
    [Google Scholar]
  7. Borowiec J. A., Gralla J. D. 1986; High-resolution analysis of lac transcription complexes inside cells. Biochemistry 25:5051–5057
    [Google Scholar]
  8. Brahmachary P., Dashti M. G., Olson J. W., Hoover T. R. 2004; Helicobacter pylori FlgR is an enhancer-independent activator of σ 54-RNA polymerase holoenzyme. J Bacteriol 186:4535–4542
    [Google Scholar]
  9. Buck M., Miller S., Drummond M., Dixon R. 1986; Upstream activator sequences are present in the promoters of nitrogen fixation genes. Nature 320:374–378
    [Google Scholar]
  10. Buck M., Gallegos M. T., Studholme D. J., Guo Y., Gralla J. D. 2000; The bacterial enhancer-dependent σ 54 ( σ N) transcription factor. J Bacteriol 182:4129–4136
    [Google Scholar]
  11. Burrows P. C., Severinov K., Buck M., Wigneshweraraj S. R. 2004; Reorganisation of an RNA polymerase–promoter DNA complex for DNA melting. EMBO J 23:4253–4263
    [Google Scholar]
  12. Cannon W. V., Gallegos M. T., Buck M. 2000; Isomerization of a binary sigma–promoter DNA complex by transcription activators. Nat Struct Biol 7:594–601
    [Google Scholar]
  13. Chaney M., Grande R., Wigneshweraraj S. R., Cannon W., Casaz P., Gallegos M. T., Schumacher J., Jones S., Elderkin S. other authors 2001; Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action. Genes Dev 15:2282–2294
    [Google Scholar]
  14. Charlton W., Cannon W., Buck M. 1993; The Klebsiella pneumoniae nifJ promoter: analysis of promoter elements regulating activation by the NifA promoter. Mol Microbiol 7:1007–1021
    [Google Scholar]
  15. Chen B., Sysoeva T. A., Chowdhury S., Nixon B. T. 2008; Regulation and action of the bacterial enhancer-binding protein AAA+ domains. Biochem Soc Trans 36:89–93
    [Google Scholar]
  16. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E. 2004; WebLogo: a sequence logo generator. Genome Res 14:1188–1190
    [Google Scholar]
  17. D'Autreaux B., Tucker N., Spiro S., Dixon R. 2008; Characterization of the nitric oxide-reactive transcriptional activator NorR. Methods Enzymol 437:235–251
    [Google Scholar]
  18. Davis J., Donohue T. J., Kaplan S. 1988; Construction, characterization, and complementation of a Puf mutant of Rhodobacter sphaeroides . J Bacteriol 170:320–329
    [Google Scholar]
  19. De Carlo S., Chen B., Hoover T. R., Kondrashkina E., Nogales E., Nixon B. T. 2006; The structural basis for regulated assembly and function of the transcriptional activator NtrC. Genes Dev 20:1485–1495
    [Google Scholar]
  20. Doucleff M., Chen B., Maris A. E., Wemmer D. E., Kondrashkina E., Nixon B. T. 2005a; Negative regulation of AAA+ ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria. J Mol Biol 353:242–255
    [Google Scholar]
  21. Doucleff M., Malak L. T., Pelton J. G., Wemmer D. E. 2005b; The C-terminal RpoN domain of σ 54 forms an unpredicted helix–turn–helix motif similar to domains of σ 70 . J Biol Chem 280:41530–41536
    [Google Scholar]
  22. Elderkin S., Bordes P., Jones S., Rappas M., Buck M. 2005; Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF. J Bacteriol 187:3238–3248
    [Google Scholar]
  23. Girard L., Brom S., Davalos A., Lopez O., Soberon M., Romero D. 2000; Differential regulation of fixN -reiterated genes in Rhizobium etli by a novel fixL fixK cascade. Mol Plant Microbe Interact 13:1283–1292
    [Google Scholar]
  24. Grimm C., Aufsatz W., Panopoulos N. J. 1995; The hrpRS locus of Pseudomonas syringae pv. phaseolicola constitutes a complex regulatory unit. Mol Microbiol 15:155–165
    [Google Scholar]
  25. Guo Y., Lew C. M., Gralla J. D. 2000; Promoter opening by σ 54 and σ 70 RNA polymerases: σ factor-directed alterations in the mechanism and tightness of control. Genes Dev 14:2242–2255
    [Google Scholar]
  26. Hankamer B. D., Elderkin S. L., Buck M., Nield J. 2004; Organization of the AAA+ adaptor protein PspA is an oligomeric ring. J Biol Chem 279:8862–8866
    [Google Scholar]
  27. Hoover T. R., Santero E., Porter S., Kustu S. 1990; The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 63:11–22
    [Google Scholar]
  28. Hopper S., Babst M., Schlensog V., Fischer H. M., Hennecke H., Bock A. 1994; Regulated expression in vitro of genes coding for formate hydrogenlyase components of Escherichia coli . J Biol Chem 269:19597–19604
    [Google Scholar]
  29. Hutcheson S. W., Bretz J., Sussan T., Jin S., Pak K. 2001; Enhancer-binding proteins HrpR and HrpS interact to regulate hrp -encoded type III protein secretion in Pseudomonas syringae strains. J Bacteriol 183:5589–5598
    [Google Scholar]
  30. Jefferson R. A., Burgess S. M., Hirsh D. 1986; β -Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci U S A 83:8447–8451
    [Google Scholar]
  31. Jovanovic G., Weiner L., Model P. 1996; Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. J Bacteriol 178:1936–1945
    [Google Scholar]
  32. Jyot J., Dasgupta N., Ramphal R. 2002; FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa , binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J Bacteriol 184:5251–5260
    [Google Scholar]
  33. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197
    [Google Scholar]
  34. Lee J. H., Scholl D., Nixon B. T., Hoover T. R. 1994; Constitutive ATP hydrolysis and transcription activation by a stable, truncated form of Rhizobium meliloti DCTD, a σ 54-dependent transcriptional activator. J Biol Chem 269:20401–20409
    [Google Scholar]
  35. Lee S. Y., De La T. A., Yan D., Kustu S., Nixon B. T., Wemmer D. E. 2003; Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev 17:2552–2563
    [Google Scholar]
  36. Lutz S., Bohm R., Beier A., Bock A. 1990; Characterization of divergent NtrA-dependent promoters in the anaerobically expressed gene cluster coding for hydrogenase 3 components of Escherichia coli . Mol Microbiol 4:13–20
    [Google Scholar]
  37. Merrick M. J. 1993; In a class of its own – the RNA polymerase sigma factor σ 54 ( σ N . Mol Microbiol 10:903–909
    [Google Scholar]
  38. Morett E., Segovia L. 1993; The σ 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175:6067–6074
    [Google Scholar]
  39. Morett E., Cannon W., Buck M. 1988; The DNA-binding domain of the transcriptional activator protein NifA resides in its carboxy terminus, recognises the upstream activator sequences of nif promoters and can be separated from the positive control function of NifA. Nucleic Acids Res 16:11469–11488
    [Google Scholar]
  40. Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V. 1999; AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43
    [Google Scholar]
  41. Ninfa A. J., Reitzer L. J., Magasanik B. 1987; Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers. Cell 50:1039–1046
    [Google Scholar]
  42. Poggio S., Aguilar C., Osorio A., Gonzalez-Pedrajo B., Dreyfus G., Camarena L. 2000; σ 54 Promoters control expression of genes encoding the hook and basal body complex in Rhodobacter sphaeroides . J Bacteriol 182:5787–5792
    [Google Scholar]
  43. Poggio S., Osorio A., Dreyfus G., Camarena L. 2002; The four different σ 54 factors of Rhodobacter sphaeroides are not functionally interchangeable. Mol Microbiol 46:75–85
    [Google Scholar]
  44. Poggio S., Osorio A., Dreyfus G., Camarena L. 2005; The flagellar hierarchy of Rhodobacter sphaeroides is controlled by the concerted action of two enhancer-binding proteins. Mol Microbiol 58:969–983
    [Google Scholar]
  45. Poggio S., Osorio A., Dreyfus G., Camarena L. 2006; Transcriptional specificity of RpoN1 and RpoN2 involves differential recognition of the promoter sequences and specific interaction with the cognate activator proteins. J Biol Chem 281:27205–27215
    [Google Scholar]
  46. Preston G., Deng W. L., Huang H. C., Collmer A. 1998; Negative regulation of hrp genes in Pseudomonas syringae by HrpV. J Bacteriol 180:4532–4537
    [Google Scholar]
  47. Rappas M., Schumacher J., Beuron F., Niwa H., Bordes P., Wigneshweraraj S., Keetch C. A., Robinson C. V., Buck M., Zhang X. 2005; Structural insights into the activity of enhancer-binding proteins. Science 307:1972–1975
    [Google Scholar]
  48. Rappas M., Bose D., Zhang X. 2007; Bacterial enhancer-binding proteins: unlocking σ 54-dependent gene transcription. Curr Opin Struct Biol 17:110–116
    [Google Scholar]
  49. Reitzer L. J., Magasanik B. 1986; Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45:785–792
    [Google Scholar]
  50. Rippe K., Mucke N., Schulz A. 1998; Association states of the transcription activator protein NtrC from E. coli determined by analytical ultracentrifugation. J Mol Biol 278:915–933
    [Google Scholar]
  51. Sallai L., Tucker P. A. 2005; Crystal structure of the central and C-terminal domain of the σ 54-activator ZraR. J Struct Biol 151:160–170
    [Google Scholar]
  52. Schneider T. D., Stephens R. M. 1990; Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100
    [Google Scholar]
  53. Schumacher J., Joly N., Rappas M., Zhang X., Buck M. 2006; Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J Struct Biol 156:190–199
    [Google Scholar]
  54. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  55. Sistrom W. R. 1962; The kinetics of the synthesis of photopigments in Rhodopseudomonas spheroides . J Gen Microbiol 28:607–616
    [Google Scholar]
  56. Sockett R. E., Foster J. C. A., Armitage J. P. 1990; Molecular biology of the Rhodobacter sphaeroides flagellum. FEMS Symp 53:473–479
    [Google Scholar]
  57. Studholme D. J., Dixon R. 2003; Domain architectures of σ 54-dependent transcriptional activators. J Bacteriol 185:1757–1767
    [Google Scholar]
  58. Su W., Porter S., Kustu S., Echols H. 1990; DNA-looping and enhancer activity: association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Proc Natl Acad Sci U S A 87:5504–5508
    [Google Scholar]
  59. Thomas-Chollier M., Sand O., Turatsinze J. V., Janky R., Defrance M., Vervisch E., Brohee S., van Helden J. 2008; RSAT: regulatory sequence analysis tools. Nucleic Acids Res 36:W119–W127
    [Google Scholar]
  60. Tucker N. P., D'Autreaux B., Spiro S., Dixon R. 2006; Mechanism of transcriptional regulation by the Escherichia coli nitric oxide sensor NorR. Biochem Soc Trans 34:191–194
    [Google Scholar]
  61. Wedel A., Weiss D. S., Popham D., Droge P., Kustu S. 1990; A bacterial enhancer functions to tether a transcriptional activator near a promoter. Science 248:486–490
    [Google Scholar]
  62. Wigneshweraraj S. R., Burrows P. C., Bordes P., Schumacher J., Rappas M., Finn R. D., Cannon W. V., Zhang X., Buck M. 2005; The second paradigm for activation of transcription. Prog Nucleic Acid Res Mol Biol 79:339–369
    [Google Scholar]
  63. Wyman C., Rombel I., North A. K., Bustamante C., Kustu S. 1997; Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein. Science 275:1658–1661
    [Google Scholar]
  64. Xu H., Gu B., Nixon B. T., Hoover T. R. 2004; Purification and characterization of the AAA+ domain of Sinorhizobium meliloti DctD, a σ 54-dependent transcriptional activator. J Bacteriol 186:3499–3507
    [Google Scholar]
  65. Zhang X., Chaney M., Wigneshweraraj S. R., Schumacher J., Bordes P., Cannon W., Buck M. 2002; Mechanochemical ATPases and transcriptional activation. Mol Microbiol 45:895–903
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024455-0
Loading
/content/journal/micro/10.1099/mic.0.024455-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error