1887

Abstract

, a deeply rooted hyperthermophilic anaerobic methanarchaeon from a deep-sea hydrothermal vent, carries an NADH oxidase (Nox) homologue (MJ0649). According to the characteristics described here, MJ0649 represents an unusual member within group 3 of the flavin-dependent disulfide reductase (FDR) family. This FDR group comprises Nox, NADH peroxidases (Npx) and coenzyme A disulfide reductases (CoADRs); each carries a Cys residue that forms Cys-sulfenic acid during catalysis. A sequence analysis identified MJ0649 as a CoADR homologue. However, recombinant MJ0649 (rMJNox), expressed in and purified to homogeneity an 86 kDa homodimer with 0.27 mol FAD (mol subunit), showed Nox but not CoADR activity. Incubation with FAD increased FAD content to 1 mol (mol subunit) and improved NADH oxidase activity 3.4-fold. The FAD-incubated enzyme was characterized further. The optimum pH and temperature were ≥10 and ≥95 °C, respectively. At pH 7 and 83 °C, apparent values for NADH and O were 3 μM and 1.9 mM, respectively, and the specific activity at 1.4 mM O was 60 μmol min mg; 62 % of NADH-derived reducing equivalents were recovered as HO and the rest probably generated HO. rMjNox had poor NADPH oxidase, NADH peroxidase and superoxide formation activities. It reduced ferricyanide, plumbagin and 5,5′-dithiobis(2-nitrobenzoic acid), but not disulfide coenzyme A and disulfide coenzyme M. Due to a high , O is not a physiologically relevant substrate for MJ0649; its true substrate remains unknown.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024265-0
2009-01-01
2020-10-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/69.html?itemId=/content/journal/micro/10.1099/mic.0.024265-0&mimeType=html&fmt=ahah

References

  1. Ahmed S. A., Claiborne A.. 1989a; The streptococcal flavoprotein NADH oxidase. II. Interactions of pyridine nucleotides with reduced and oxidized enzyme forms. J Biol Chem264:19863–19870
    [Google Scholar]
  2. Ahmed S. A., Claiborne A.. 1989b; The streptococcal flavoprotein NADH oxidase. I. Evidence linking NADH oxidase and NADH peroxidase cysteinyl redox centers. J Biol Chem264:19856–19863
    [Google Scholar]
  3. Argyrou A., Blanchard J. S.. 2004; Flavoprotein disulfide reductases: advances in chemistry and function. Prog Nucleic Acid Res Mol Biol78:89–142
    [Google Scholar]
  4. Bellamacina C. R.. 1996; The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J10:1257–1269
    [Google Scholar]
  5. Boone D. R., Whitman W. B., Rouviére P.. 1993; Diversity and taxonomy of methanogens. Chapter 1 in Methanogenesis: Ecology, Physiology, Biochemistry and Genetics pp35–80 Edited by Ferry J. G.. New York: Chapman & Hall;
    [Google Scholar]
  6. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  7. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A.. other authors 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science273:1058–1073
    [Google Scholar]
  8. Cantor C. R., Schimmel P. R.. 1980; Techniques for the Study of Biological Structure and Function: Biophysical Chemistry New York: W. H. Freeman;
    [Google Scholar]
  9. Claiborne A., Miller H., Parsonage D., Ross R. P.. 1993; Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J7:1483–1490
    [Google Scholar]
  10. Claiborne A., Yeh J. I., Mallett T. C., Luba J., Crane E. J. III, Charrier V., Parsonage D.. 1999; Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry38:15407–15416
    [Google Scholar]
  11. Cleland W. W.. 1979; Statistical analysis of enzyme kinetic data. Methods Enzymol63:103–138
    [Google Scholar]
  12. Corliss J. B., Dymond J., Gordon L. I., Edmond J. M., von Herzen R. P., Ballard R. D., Green K., Williams D., Bainbridge A.. & other authors. 1979; Submarine thermal springs on Galápagos Rift. Science203:1073–1083
    [Google Scholar]
  13. Daniels L., Wessels D.. 1984; A method for the spectrophotometric assay of anaerobic enzymes. Anal Biochem141:232–237
    [Google Scholar]
  14. Dawson R. M. C., Elliott D. C., Elliott W. H., Jones K. M.. 2002; Data for Biochemical Research , 3rd edn. New York: Oxford University Press;
    [Google Scholar]
  15. delCardayre S. B., Davies J. E.. 1998; Staphylococcus aureus coenzyme A disulfide reductase, a new subfamily of pyridine nucleotide-disulfide oxidoreductase. Sequence, expression, and analysis of cdr. J Biol Chem273:5752–5757
    [Google Scholar]
  16. delCardayre S. B., Stock K. P., Newton G. L., Fahey R. C., Davies J. E.. 1998; Coenzyme A disulfide reductase, the primary low molecular weight disulfide reductase from Staphylococcus aureus. Purification and characterization of the native enzyme. J Biol Chem273:5744–5751
    [Google Scholar]
  17. Ellman G. L.. 1958; A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys74:443–450
    [Google Scholar]
  18. Galagan J. E., Nusbaum C., Roy A., Endrizzi M. G., Macdonald P., FitzHugh W., Calvo S., Engels R., Smirnov S.. other authors 2002; The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res12:532–542
    [Google Scholar]
  19. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  20. Harris D. R., Ward D. E., Feasel J. M., Lancaster K. M., Murphy R. D., Mallet T. C., Crane E. J. III. 2005; Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for the disulfide metabolism of anaerobic hyperthermophiles. FEBS J272:1189–1200
    [Google Scholar]
  21. Hendrickson E. L., Kaul R., Zhou Y., Bovee D., Chapman P., Chung J., Conway de Macario E., Dodsworth J. A., Gillett W.. other authors 2004; Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol186:6956–6969
    [Google Scholar]
  22. Hillar A., Loewen P. C.. 1995; Comparison of isoniazid oxidation catalyzed by bacterial catalase-peroxidases and horseradish peroxidase. Arch Biochem Biophys323:438–446
    [Google Scholar]
  23. Huber R., Stoffers P., Cheminee J. L., Richnow H. H., Stetter K. O.. 1990; Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature345:179–182
    [Google Scholar]
  24. Jannasch H. W., Mottl M. J.. 1985; Geomicrobiology of deep-sea hydrothermal vents. Science229:717–725
    [Google Scholar]
  25. Jannasch H. W., Wirsen C. O., Molyneaux S. J., Langworthy T. A.. 1992; Comparative physiological studies on hyperthermophilic archaea isolated from deep-sea hot vents with emphasis on Pyrococcus strain GB-D. Appl Environ Microbiol58:3472–3481
    [Google Scholar]
  26. Jenney F. E., Adams M. W.. 2001; Rubredoxin from Pyrococcus furiosus. Methods Enzymol334:45–54
    [Google Scholar]
  27. Johnson E. F., Mukhopadhyay B.. 2005; A new type of sulfite reductase, a novel coenzyme F420-dependent enzyme, from the methanarchaeon Methanocaldococcus jannaschii. J Biol Chem280:38776–38786
    [Google Scholar]
  28. Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S.. 1983; Methanococcus jannaschii sp. nov., an extreme thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol136:254–261
    [Google Scholar]
  29. Kengen S. W., van der Oost J., de Vos W. M.. 2003; Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus. Eur J Biochem270:2885–2894
    [Google Scholar]
  30. Klenk H. P., Clayton R. A., Tomb J. F., White O., Nelson K. E., Ketchum K. A., Dodson R. J., Gwinn M., Hickey E. K.. other authors 1997; The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature390:364–370
    [Google Scholar]
  31. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  32. Liley P. E., Reid R. C., Buck E.. 1984; Physical and chemical data, section 3. In Perry's Chemical Engineers' Handbook pp1–291 Edited by Perry R. H., Green D. W. New York: McGraw-Hill;
    [Google Scholar]
  33. Ma K., Adams M. W.. 2001; NAD(P)H : rubredoxin oxidoreductase from Pyrococcus furiosus. Methods Enzymol334:55–62
    [Google Scholar]
  34. Maeder D. L., Weiss R. B., Dunn D. M., Cherry J. L., Gonzalez J. M., DiRuggiero J., Robb F. T.. 1999; Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics152:1299–1305
    [Google Scholar]
  35. Mallett T. C., Claiborne A.. 1998; Oxygen reactivity of an NADH oxidase C42S mutant: evidence for a C(4a)-peroxyflavin intermediate and a rate-limiting conformational change. Biochemistry37:8790–8802
    [Google Scholar]
  36. Mallett T. C., Wallen J. R., Karplus P. A., Sakai H., Tsukihara T., Claiborne A.. 2006; Structure of coenzyme A-disulfide reductase from Staphylococcus aureus at 1.54 Å resolution. Biochemistry45:11278–11289
    [Google Scholar]
  37. Mayhew S. G., Massey V.. 1969; Purification and characterization of flavodoxin from Peptostreptococcus elsdenii. J Biol Chem244:794–802
    [Google Scholar]
  38. McCollom T. M., Shock E. L.. 1997; Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta61:4375–4391
    [Google Scholar]
  39. Miroux B., Walker J. E.. 1996; Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol260:289–298
    [Google Scholar]
  40. Mukhopadhyay B., Daniels L.. 1989; Aerobic purification of N 5, N 10-methylenetetrahydromethanopterin dehydrogenase, separated from N 5, N 10-methylenetetrahydromethanopterin cyclohydrolase, from Methanobacterium thermoautotrophicum strain Marburg. Can J Microbiol35:499–507
    [Google Scholar]
  41. Mukhopadhyay B., Purwantini E.. 2000; Pyruvate carboxylase from Mycobacterium smegmatis: stabilization, rapid purification, molecular and biochemical characterization and regulation of the cellular level. Biochim Biophys Acta 1475;191–206
    [Google Scholar]
  42. Mukhopadhyay B., Patel V. J., Wolfe R. S.. 2000; A stable archaeal pyruvate carboxylase from the hyperthermophile Methanococcus jannaschii. Arch Microbiol174:406–414
    [Google Scholar]
  43. Pagala V. R., Park J., Reed D. W., Hartzell P. L.. 2002; Cellular localization of d-lactate dehydrogenase and NADH oxidase from Archaeoglobus fulgidus. Archaea1:95–104
    [Google Scholar]
  44. Parsonage D., Miller H., Ross R. P., Claiborne A.. 1993; Purification and analysis of streptococcal NADH peroxidase expressed in Escherichia coli. J Biol Chem268:3161–3167
    [Google Scholar]
  45. Patel H. M., Kraszewski J. L., Mukhopadhyay B.. 2004; The phosphoenolpyruvate carboxylase from Methanothermobacter thermautotrophicus has a novel structure. J Bacteriol186:5129–5137
    [Google Scholar]
  46. Poole L. B., Claiborne A.. 1986; Interactions of pyridine nucleotides with redox forms of the flavin-containing NADH peroxidase from Streptococcus faecalis. J Biol Chem261:14525–14533
    [Google Scholar]
  47. Reed D. W., Millstein J., Hartzell P. L.. 2001; H2O2-forming NADH oxidase with diaphorase (cytochrome) activity from Archaeoglobus fulgidus. J Bacteriol183:7007–7016
    [Google Scholar]
  48. Robb F. T., Maeder D. L., Brown J. R., DiRuggiero J., Stump M. D., Yeh R. K., Weiss R. B., Dunn D. M.. 2001; Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol330:134–157
    [Google Scholar]
  49. Ross R. P., Claiborne A.. 1991; Cloning, sequence and overexpression of NADH peroxidase from Streptococcus faecalis 10C1. Structural relationship with the flavoprotein disulfide reductases. J Mol Biol221:857–871
    [Google Scholar]
  50. Ross R. P., Claiborne A.. 1992; Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1. Comparison with NADH peroxidase and the flavoprotein disulfide reductases. J Mol Biol227:658–671
    [Google Scholar]
  51. Rothery R. A., Chatterjee I., Kiema G., McDermott M. T., Weiner J. H.. 1998; Hydroxylated naphthoquinones as substrates for Escherichia coli anaerobic reductases. Biochem J332:35–41
    [Google Scholar]
  52. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  53. Schmidt H. L., Stocklein W., Danzer J., Kirch P., Limbach B.. 1986; Isolation and properties of an H2O-forming NADH oxidase from Streptococcus faecalis. Eur J Biochem156:149–155
    [Google Scholar]
  54. Schut G. J., Bridger S. L., Adams M. W. W.. 2007; Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a Coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J Bacteriol189:4431–4441
    [Google Scholar]
  55. Singh R., Wiseman B., Deemagarn T., Donald L. J., Duckworth H. W., Carpena X., Fita I., Loewen P. C.. 2004; Catalase-peroxidases (KatG) exhibit NADH oxidase activity. J Biol Chem279:43098–43106
    [Google Scholar]
  56. Smith S. G., Rouviere P. E.. 1990; Purification and characterization of the reduced-nicotinamide-dependent 2,2′-dithiodiethanesulfonate reductase from Methanobacterium thermoautotrophicum delta H. J Bacteriol172:6435–6441
    [Google Scholar]
  57. Smith D. R., Doucette-Stamm L. A., Deloughery C., Lee H., Dubois J., Aldredge T., Bashirzadeh R., Blakely D., Cook R.. other authors 1997; Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol179:7135–7155
    [Google Scholar]
  58. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I.. 1993; Hyperthermophilic archaea are thriving in deep North-Sea and Alaskan oil-reservoirs. Nature365:743–745
    [Google Scholar]
  59. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  60. Toomey D., Mayhew S. G.. 1998; Purification and characterisation of NADH oxidase from Thermus aquaticus YT-1 and evidence that it functions in a peroxide-reduction system. Eur J Biochem251:935–945
    [Google Scholar]
  61. Wallen J. R., Paige C., Mallett T. C., Karplus P. A., Claiborne A.. 2008; Pyridine nucleotide complexes with Bacillus anthracis coenzyme A-disulfide reductase: a structural analysis of dual NAD(P)H specificity. Biochemistry47:5182–5193
    [Google Scholar]
  62. Ward D. E., Donnelly C. J., Mullendore M. E., van der Oost J., de Vos W. M., Crane E. J. III. 2001; The NADH oxidase from Pyrococcus furiosus. Implications for the protection of anaerobic hyperthermophiles against oxidative stress. Eur J Biochem268:5816–5823
    [Google Scholar]
  63. Yang X., Ma K.. 2005; Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea. Arch Microbiol183:331–337
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024265-0
Loading
/content/journal/micro/10.1099/mic.0.024265-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error