1887

Abstract

In the absence of the ATP-dependent metalloprotease FtsH, the sporulation frequency of cells is reduced by several orders of magnitude. This indicates that FtsH has to degrade or to regulate the steady-state level of one or more proteins that interfere with successful sporulation. Here, we show that the amount of the master regulator protein Spo0A is reduced in an knockout and the small amounts of Spo0A protein present are inactive. Phosphorylation of Spo0A occurs through a phosphorelay. Four negative regulators have been identified here which directly interfere with the phosphorelay through , namely the phosphatases RapA, RapB, RapE and Spo0E. If a null allele in any one of them was combined with an knockout, the sporulation frequency was increased by two to three orders of magnitude, but remained below 1 %. When purified Spo0E was incubated with FtsH, partial degradation of the phosphatase was observed. In contrast, two mutant versions of Spo0E with truncated C-termini remained stable. Transfer of the C-terminal 25 aa of Spo0E to a shorter homologue of Spo0E, YnzD, which is not a substrate of FtsH, conferred instability. When a mutant Spo0A was produced that was active in the absence of phosphorylation, spores were formed at a normal rate in an knockout, indicating that is needed only during phase 0.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024182-0
2009-04-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1122.html?itemId=/content/journal/micro/10.1099/mic.0.024182-0&mimeType=html&fmt=ahah

References

  1. Belunis, C. J. & Raetz, C. R. ( 1992; ). Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-d-manno-octulosonic acid transferase from Escherichia coli. J Biol Chem 267, 9988–9997.
    [Google Scholar]
  2. Burbulys, D., Trach, K. A. & Hoch, J. A. ( 1991; ). Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545–552.[CrossRef]
    [Google Scholar]
  3. Chibazakura, T., Kawamura, F. & Takahashi, H. ( 1991; ). Differential regulation of spo0A transcription in Bacillus subtilis: glucose represses promoter switching at the initiation of sporulation. J Bacteriol 173, 2625–2632.
    [Google Scholar]
  4. Chung, J. D., Stephanopoulos, G., Ireton, K. & Grossman, A. D. ( 1994; ). Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J Bacteriol 176, 1977–1984.
    [Google Scholar]
  5. Deuerling, E., Mogk, A., Richter, C., Purucker, M. & Schumann, W. ( 1997; ). The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol Microbiol 23, 921–933.[CrossRef]
    [Google Scholar]
  6. Dubnau, D. & Losick, R. ( 2006; ). Bistability in bacteria. Mol Microbiol 61, 564–572.[CrossRef]
    [Google Scholar]
  7. Errington, J. ( 1993; ). Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57, 1–33.
    [Google Scholar]
  8. Errington, J. ( 2003; ). Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1, 117–126.[CrossRef]
    [Google Scholar]
  9. Ferrari, F. A., Trach, K., LeCoq, D., Spence, J., Ferrari, E. & Hoch, J. A. ( 1985; ). Characterization of the spo0A locus and its deduced product. Proc Natl Acad Sci U S A 82, 2647–2651.[CrossRef]
    [Google Scholar]
  10. Flynn, J. M., Neher, S. B., Kim, Y. I., Sauer, R. T. & Baker, T. A. ( 2003; ). Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11, 671–683.[CrossRef]
    [Google Scholar]
  11. Führer, F., Langklotz, S. & Narberhaus, F. ( 2006; ). The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol Microbiol 59, 1025–1036.[CrossRef]
    [Google Scholar]
  12. Fujita, M., Gonzalez-Pastor, J. E. & Losick, R. ( 2005; ). High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 187, 1357–1368.[CrossRef]
    [Google Scholar]
  13. Gerth, U., Krüger, E., Derré, I., Msadek, T. & Hecker, M. ( 1998; ). Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28, 787–802.
    [Google Scholar]
  14. Guérout-Fleury, A. M., Frandsen, N. & Stragier, P. ( 1996; ). Plasmids for ectopic integration in Bacillus subtilis. Gene 180, 57–61.[CrossRef]
    [Google Scholar]
  15. Harwood, C. R. & Cutting, S. ( 1990; ). Molecular Biological Methods for Bacillus. Chichester, UK: Wiley.
  16. Hoch, J. A. ( 1993; ). Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol 47, 441–465.[CrossRef]
    [Google Scholar]
  17. Ireton, K., Rudner, D. Z., Siranosian, K. J. & Grossman, A. D. ( 1993; ). Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev 7, 283–294.[CrossRef]
    [Google Scholar]
  18. Jiang, M., Grau, R. & Perego, M. ( 2000a; ). Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J Bacteriol 182, 303–310.[CrossRef]
    [Google Scholar]
  19. Jiang, M., Shao, W., Perego, M. & Hoch, J. A. ( 2000b; ). Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38, 535–542.[CrossRef]
    [Google Scholar]
  20. Katz, C. & Ron, E. Z. ( 2008; ). Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 190, 7117–7122.[CrossRef]
    [Google Scholar]
  21. Kotschwar, M., Harfts, E., Ohanjan, T. & Schumann, W. ( 2004; ). Construction and analyses of mutant ftsH alleles of Bacillus subtilis involving the ATPase- and Zn-binding domains. Curr Microbiol 49, 180–185.
    [Google Scholar]
  22. Kudoh, J., Ikeuchi, T. & Kurahashi, K. ( 1985; ). Nucleotide sequences of the sporulation gene spo0A and its mutant genes of Bacillus subtilis. Proc Natl Acad Sci U S A 82, 2665–2668.[CrossRef]
    [Google Scholar]
  23. Le Breton, Y., Mohapatra, N. P. & Haldenwang, W. G. ( 2006; ). In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol 72, 327–333.[CrossRef]
    [Google Scholar]
  24. Lysenko, E., Ogura, T. & Cutting, S. M. ( 1997; ). Characterization of the ftsH gene of Bacillus subtilis. Microbiology 143, 971–978.[CrossRef]
    [Google Scholar]
  25. Margolin, W. ( 2000; ). Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Methods 20, 62–72.[CrossRef]
    [Google Scholar]
  26. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Molle, V., Fujita, M., Jensen, S. T., Eichenberger, P., Gonzalez-Pastor, J. E., Liu, J. S. & Losick, R. ( 2003; ). The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50, 1683–1701.[CrossRef]
    [Google Scholar]
  28. Msadek, T., Dartois, V., Kunst, F., Herbaud, M.-L., Denizot, F. & Rapoport, G. ( 1998; ). ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27, 899–914.[CrossRef]
    [Google Scholar]
  29. Nanamiya, H., Takahashi, K., Fujita, M. & Kawamura, F. ( 2000; ). Deficiency of the initiation events of sporulation in Bacillus subtilis clpP mutant can be suppressed by a lack of the Spo0E protein phosphatase. Biochem Biophys Res Commun 279, 229–233.[CrossRef]
    [Google Scholar]
  30. Ogura, T. & Wilkinson, A. J. ( 2001; ). AAA+ superfamily ATPases: common structure – diverse function. Genes Cells 6, 575–597.[CrossRef]
    [Google Scholar]
  31. Ogura, T., Inoue, K., Tatsuta, T., Suzaki, T., Karata, K., Young, K., Su, L. H., Fierke, C. A., Jackman, J. E. & other authors ( 1999; ). Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 31, 833–844.[CrossRef]
    [Google Scholar]
  32. Ohlsen, K. L., Grimsley, J. K. & Hoch, J. A. ( 1994; ). Deactivation of the sporulation transcription factor Spo0A by the Spo0E protein phosphatase. Proc Natl Acad Sci U S A 91, 1756–1760.[CrossRef]
    [Google Scholar]
  33. Perego, M. ( 1998; ). Kinase-phosphatase competition regulates Bacillus subtilis development. Trends Microbiol 6, 366–370.[CrossRef]
    [Google Scholar]
  34. Perego, M. ( 2001; ). A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Mol Microbiol 42, 133–143.
    [Google Scholar]
  35. Perego, M. & Hoch, J. A. ( 1987; ). Isolation and sequence of the spo0E gene: its role in initiation of sporulation in Bacillus subtilis. Mol Microbiol 1, 125–132.[CrossRef]
    [Google Scholar]
  36. Perego, M. & Hoch, J. A. ( 1991; ). Negative regulation of Bacillus subtilis sporulation by the spo0E gene product. J Bacteriol 173, 2514–2520.
    [Google Scholar]
  37. Perego, M., Spiegelman, G. B. & Hoch, J. A. ( 1988; ). Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol Microbiol 2, 689–699.[CrossRef]
    [Google Scholar]
  38. Phillips, Z. E. V. & Strauch, M. A. ( 2002; ). Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci 59, 392–402.[CrossRef]
    [Google Scholar]
  39. Schumann, W. ( 1999; ). FtsH – a single-chain charonin? FEMS Microbiol Rev 23, 1–11.
    [Google Scholar]
  40. Smits, W. K., Kuipers, O. P. & Veening, J. W. ( 2006; ). Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4, 259–271.[CrossRef]
    [Google Scholar]
  41. Sorensen, P. G., Lutkenhaus, J., Young, K., Eveland, S. S., Anderson, M. S. & Raetz, C. R. ( 1996; ). Regulation of UDP-3-O-[R-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase in Escherichia coli. The second enzymatic step of lipid A biosynthesis. J Biol Chem 271, 25898–25905.[CrossRef]
    [Google Scholar]
  42. Strauch, M. A., Trach, K. A. & Hoch, J. A. ( 1992; ). Spo0A activates and represses its own synthesis by binding at its dual promoters. Biochimie 74, 619–626.[CrossRef]
    [Google Scholar]
  43. Sullivan, N. F. & Donachie, W. D. ( 1984; ). Transcriptional organization within an Escherichia coli cell division gene cluster: direction of transcription of the cell separation gene envA. J Bacteriol 160, 724–732.
    [Google Scholar]
  44. Suno, R., Niwa, H., Tsuchiya, D., Zhang, X., Yoshida, M. & Morikawa, K. ( 2006; ). Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol Cell 22, 575–585.[CrossRef]
    [Google Scholar]
  45. Tatsuta, T., Tomoyasu, T., Bukau, B., Kitagawa, M., Mori, H., Karata, K. & Ogura, T. ( 1998; ). Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of σ 32 in vivo. Mol Microbiol 30, 583–594.[CrossRef]
    [Google Scholar]
  46. Teff, D., Koby, S., Shotland, Y., Ogura, T. & Oppenheim, A. B. ( 2000; ). A colicin-tolerant Escherichia coli mutant that confers Hfl phenotype carries two mutations in the region coding for the C-terminal domain of FtsH (HflB). FEMS Microbiol Lett 183, 115–117.[CrossRef]
    [Google Scholar]
  47. Tomoyasu, T., Yamanaka, K., Murata, K., Suzaki, T., Bouloc, P., Kato, A., Niki, H., Hiraga, S. & Ogura, T. ( 1993a; ). Topology and subcellular localization of FtsH protein in Escherichia coli. J Bacteriol 175, 1352–1357.
    [Google Scholar]
  48. Tomoyasu, T., Yura, T., Morimura, S., Mori, H., Yamanaka, K., Niki, H., Hiraga, S. & Ogura, T. ( 1993b; ). The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J Bacteriol 175, 1344–1351.
    [Google Scholar]
  49. Tomoyasu, T., Gamer, J., Bukau, B., Kanemori, M., Mori, H., Rutman, A. J., Oppenheim, A. B., Yura, T., Yamanaka, K. & other authors ( 1995; ). Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ 32. EMBO J 14, 2551–2560.
    [Google Scholar]
  50. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  51. Wehrl, W., Niederweis, M. & Schumann, W. ( 2000; ). The FtsH protein accumulates at the septum of Bacillus subtilis during cell division and sporulation. J Bacteriol 182, 3870–3873.[CrossRef]
    [Google Scholar]
  52. Wiegert, T. & Schumann, W. ( 2001; ). SsrA-mediated tagging in Bacillus subtilis. J Bacteriol 183, 3885–3889.[CrossRef]
    [Google Scholar]
  53. Yamashita, S., Kawamura, A., Yoshikawa, H., Takahashi, H. & Kobayashi, Y. ( 1989; ). Dissection of the expression signals of the spo0A gene of Bacillus subtilis: glucose represses sporulation-specific expression. J Gen Microbiol 135, 1335–1345.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024182-0
Loading
/content/journal/micro/10.1099/mic.0.024182-0
Loading

Data & Media loading...

Supplements

Bacterial strains and plasmids [ PDF] (99 kb) Oligonucleotides [ PDF] (17 kb)

PDF

Bacterial strains and plasmids [ PDF] (99 kb) Oligonucleotides [ PDF] (17 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error