1887

Abstract

Indole produced via the -elimination reaction of -tryptophan by pyridoxal 5′-phosphate-dependent tryptophanase (EC 4.1.99.1) has recently been shown to be an extracellular and intercellular signalling molecule in bacteria, and controls bacterial biofilm formation and virulence factors. In the present study, we determined the molecular basis of indole production in the periodontopathogenic bacterium . A database search showed that the amino acid sequence deduced from of W83 is 45 % identical with that from of K-12, which encodes tryptophanase. Replacement of the gene in the chromosomal DNA with the chloramphenicol-resistance gene abolished indole production. The production of indole was restored by the introduction of , demonstrating that the gene is functionally equivalent to . However, RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends analyses showed that, unlike , is expressed alone in and that the nucleotide sequence of the transcription start site is different, suggesting that the expression of is controlled by a unique mechanism. Purified recombinant tryptophanase exhibited the Michaelis–Menten kinetics values =0.20±0.01 mM and =1.37±0.06 s in potassium phosphate buffer, but in sodium phosphate buffer, the enzyme showed lower activity. However, the cation in the buffer, K or Na, did not appear to affect the quaternary structure of the enzyme or the binding of pyridoxal 5′-phosphate to the enzyme. The enzyme also degraded -ethyl--cysteine and -methyl--cysteine, but not -alanine, -serine or -cysteine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024174-0
2009-03-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/968.html?itemId=/content/journal/micro/10.1099/mic.0.024174-0&mimeType=html&fmt=ahah

References

  1. Anyanful A., Dolan-Livengood J. M., Lewis T., Sheth S., Dezalia M. N., Sherman M. A., Kalman L. V., Benian G. M., Kalman D. 2005; Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Mol Microbiol 57:988–1007
    [Google Scholar]
  2. Blankenhorn D., Phillips J., Slonczewski J. L. 1999; Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216
    [Google Scholar]
  3. Church G. M., Gilbert W. 1984; Genomic sequencing. Proc Natl Acad Sci U S A 81:1991–1995
    [Google Scholar]
  4. Claesson R., Edlund M. B., Persson S., Carlsson J. 1990; Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiol Immunol 5:137–142
    [Google Scholar]
  5. Deeley M. C., Yanofsky C. 1981; Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12. J Bacteriol 147:787–796
    [Google Scholar]
  6. Deeley M. C., Yanofsky C. 1982; Transcription initiation at the tryptophanase promoter of Escherichia coli K-12. J Bacteriol 151:942–951
    [Google Scholar]
  7. Demidkina T. V., Zakomirdina L. N., Kulikova V. V., Dementieva I. S., Faleev N. G., Ronda L., Mozzarelli A., Gollnick P. D., Phillips R. S. 2003; Role of aspartate-133 and histidine-458 in the mechanism of typtophan indole-lyase from Proteus vulgaris . Biochemistry 42:11161–11169
    [Google Scholar]
  8. Erez T., Gdalevsky G., Torchinsky Y. M., Phillips R. S., Parola A. H. 1998; Cold inactivation and dissociation into dimers of Escherichia coli tryptophanase and its W330F mutant form. Biochim Biophys Acta 1384:365–372
    [Google Scholar]
  9. Fosdick L. S., Piez K. A. 1953; Chemical studies in periodontal disease. X. Paper chromatographic investigation of the putrefaction associated with periodontitis. J Dent Res 32:87–100
    [Google Scholar]
  10. Garbe T. R., Kobayashi M., Yukawa H. 2000; Indole-inducible proteins in bacteria suggest membrane and oxidant toxicity. Arch Microbiol 173:78–82
    [Google Scholar]
  11. Goldberg S., Kozlovsky A., Gordon D., Gelernter I., Sintov A., Rosenberg M. 1994; Cadaverine as a putative component of oral malodor. J Dent Res 73:1168–1172
    [Google Scholar]
  12. Hansen M. C., Palmer R. J. Jr, Udsen C., White D. C., Molin S. 2001; Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147:1383–1391
    [Google Scholar]
  13. Hirakawa H., Inazumi Y., Masaki T., Hirata T., Yamaguchi A. 2005; Indole induces the expression of multidrug exporter genes in Escherichia coli . Mol Microbiol 55:1113–1126
    [Google Scholar]
  14. Hoch J. A., Simpson F. J., DeMoss R. D. 1966; Purification and some properties of tryptophanase from Bacillus alvei . Biochemistry 5:2229–2237
    [Google Scholar]
  15. Honda T., Tokushige M. 1986; Effects of temperature and monovalent cations on activity and quaternary structure of tryptophanase. J Biochem 100:679–685
    [Google Scholar]
  16. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68
    [Google Scholar]
  17. Isupov M. N., Antson A. A., Dodson E. J., Dodson G. G., Dementieva I. S., Zakomirdina L. N., Wilson K. S., Dauter Z., Lebedev A. A., Harutyunyan E. H. 1998; Crystal structure of tryptophanase. J Mol Biol 276:603–623
    [Google Scholar]
  18. Kagamiyama H., Matsubara H., Snell E. E. 1972; The chemical structure of tryptophanase from Escherichia coli. 3. Isolation and amino acid sequence of the tryptic peptides. J Biol Chem 247:1576–1586
    [Google Scholar]
  19. Kamath A. V., Yanofsky C. 1992; Characterization of the tryptophanase operon of Proteus vulgaris. Cloning, nucleotide sequence, amino acid homology, and in vitro synthesis of the leader peptide and regulatory analysis. J Biol Chem 267:19978–19985
    [Google Scholar]
  20. Kawasaki K., Yokota A., Oita S., Kobayashi C., Yoshikawa S., Kawamoto S., Takao S., Tomita F. 1993; Cloning and characterization of a tryptophanase gene from Enterobacter aerogenes SM-18. J Gen Microbiol 139:3275–3281
    [Google Scholar]
  21. Kolenbrander P. E., Andersen R. N., Blehert D. S., Egland P. G., Foster J. S., Palmer R. J. Jr 2002; Communication among oral bacteria. Microbiol Mol Biol Rev 66:486–505
    [Google Scholar]
  22. Kostelc J. G., Preti G., Zelson P. R., Tonzetich J., Huggins G. R. 1981; Volatiles of exogenous origin from the human oral cavity. J Chromatogr 226:315–323
    [Google Scholar]
  23. Krstulovic A. M., Matzura C. 1979; Rapid assay for tryptophanase using reversed-phase high-performance liquid chromatography. J Chromatogr 176:217–224
    [Google Scholar]
  24. Ku S. Y., Yip P., Howell P. L. 2006; Structure of Escherichia coli tryptophanase. Acta Crystallogr D Biol Crystallogr 62:814–823
    [Google Scholar]
  25. Lamont R. J., Jenkinson H. F. 1998; Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis . Microbiol Mol Biol Rev 62:1244–1263
    [Google Scholar]
  26. Lamont R. J., Jenkinson H. F. 2000; Subgingival colonization by Porphyromonas gingivalis . Oral Microbiol Immunol 15:341–349
    [Google Scholar]
  27. Lee J., Jayaraman A., Wood T. K. 2007; Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:42
    [Google Scholar]
  28. Martin K., Morlin G., Smith A., Nordyke A., Eisenstark A., Golomb M. 1998; The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer. J Bacteriol 180:107–118
    [Google Scholar]
  29. Metzler C. M., Viswanath R., Metzler D. E. 1991; Equilibria and absorption spectra of tryptophanase. J Biol Chem 266:9374–9381
    [Google Scholar]
  30. Morino Y., Snell E. E. 1967; The subunit structure of tryptophanase. I. The effect of pyridoxal phosphate on the subunit structure and physical properties of tryptophanase. J Biol Chem 242:5591–5601
    [Google Scholar]
  31. Morino Y., Snell E. E. 1970; Tryptophanase ( Escherichia coli B. Methods Enzymol 17A:439–446
    [Google Scholar]
  32. Nakano Y., Yoshida Y., Yamashita Y., Koga T. 1995; Construction of a series of pACYC-derived plasmid vectors. Gene 162:157–158
    [Google Scholar]
  33. Nakayama K., Kadowaki T., Okamoto K., Yamamoto K. 1995; Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis. Evidence for significant contribution of Arg-gingipain to virulence. J Biol Chem 270:23619–23626
    [Google Scholar]
  34. Nelson K. E., Fleischmann R. D., DeBoy R. T., Paulsen I. T., Fouts D. E., Eisen J. A., Daugherty S. C., Dodson R. J., Durkin A. S. other authors 2003; Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 185:5591–5601
    [Google Scholar]
  35. Newton W. A., Morino Y., Snell E. E. 1965; Properties of crystalline tryptophanase. J Biol Chem 240:1211–1218
    [Google Scholar]
  36. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. 1995; How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423
    [Google Scholar]
  37. Phillips R. S. 1987; Reactions of O-acyl-l-serines with tryptophanase, tyrosine phenol-lyase, and tryptophan synthase. Arch Biochem Biophys 256:302–310
    [Google Scholar]
  38. Phillips R. S., Gollnick P. D. 1989; Evidence that cysteine 298 is in the active site of tryptophan indole-lyase. J Biol Chem 264:10627–10632
    [Google Scholar]
  39. Raibaud O., Goldberg M. E. 1976; The dissociated tryptophanase subunit is inactive. J Biol Chem 251:2820–2824
    [Google Scholar]
  40. Rezwan F., Lan R., Reeves P. R. 2004; Molecular basis of the indole-negative reaction in Shigella strains: extensive damages to the tna operon by insertion sequences. J Bacteriol 186:7460–7465
    [Google Scholar]
  41. Snell E. E. 1975; Tryptophanase: structure, catalytic activities, and mechanism of action. Adv Enzymol Relat Areas Mol Biol 42:287–333
    [Google Scholar]
  42. Stewart V., Yanofsky C. 1986; Role of leader peptide synthesis in tryptophanase operon expression in Escherichia coli K-12. J Bacteriol 167:383–386
    [Google Scholar]
  43. Watanabe T., Snell E. E. 1977; The interaction of Escherichia coli tryptophanase with various amino and their analogs. Active site mapping. J Biochem 82:733–745
    [Google Scholar]
  44. Yoshida Y., Nakano Y., Amano A., Yoshimura M., Fukamachi H., Oho T., Koga T. 2002; lcd from Streptoccus anginosus encodes a C–S lyase with α, β-elimination activity that degarades l-cysteine. Microbiology 148:3961–3970
    [Google Scholar]
  45. Yoshida Y., Negishi M., Nakano Y. 2003a; Homocysteine biosynthesis pathways of Streptococcus anginosus . FEMS Microbiol Lett 221:277–284
    [Google Scholar]
  46. Yoshida Y., Suzuki N., Nakano Y., Shibuya K., Ogawa Y., Koga T. 2003b; Distribution of Actinobacillus actinomycetemcomitans serotypes and Porphyromonas gingivalis in Japanese adults. Oral Microbiol Immunol 18:135–139
    [Google Scholar]
  47. Yoshimura M., Nakano Y., Yamashita Y., Oho T., Saito T., Koga T. 2000; Formation of methyl mercaptan from l-methionine by Porphyromonas gingivalis . Infect Immun 68:6912–6916
    [Google Scholar]
  48. Zakomirdina L. N., Kulikova V. V., Gogoleva O. I., Dementieva I. S., Faleev N. G., Demidkina T. V. 2002; Tryptophan indole-lyase from Proteus vulgaris: kinetic and spectral properties. Biochemistry (Mosc) 67:1189–1196
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.024174-0
Loading
/content/journal/micro/10.1099/mic.0.024174-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error