1887

Abstract

Cereulide, a depsipeptide structurally related to the antibiotic valinomycin, is responsible for the emetic type of gastrointestinal disease caused by . Recently, it has been shown that cereulide is produced non-ribosomally by the plasmid-encoded peptide synthetase Ces. Using deletion mutants of the emetic reference strain F4810/72, the influence of the well-known transcription factors PlcR, Spo0A and AbrB on cereulide production and on the transcription of the cereulide synthetase gene cluster was investigated. Our data demonstrate that cereulide synthesis is independent of the specific virulence regulator PlcR but belongs to the Spo0A-AbrB regulon. Although cereulide production turned out to be independent of sporulation, it required the activity of the sporulation factor Spo0A. The -promoted transcription of was found to be crucial for cereulide production, while the -driven transcription of did not affect cereulide synthesis. Overexpression of the transition state factor AbrB in F4810/72 resulted in a non-toxic phenotype. Moreover, AbrB was shown to bind efficiently to the main promoter region of the operon, indicating that AbrB acts as a repressor of cereulide production by negatively affecting transcription.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024125-0
2009-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/922.html?itemId=/content/journal/micro/10.1099/mic.0.024125-0&mimeType=html&fmt=ahah

References

  1. Agaisse, H., Gominet, M., Okstad, O. A., Kolsto, A. B. & Lereclus, D. ( 1999; ). PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32, 1043–1053.[CrossRef]
    [Google Scholar]
  2. Agata, N., Ohta, M., Mori, M. & Isobe, M. ( 1995; ). A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol Lett 129, 17–20.
    [Google Scholar]
  3. Albano, M., Hahn, J. & Dubnau, D. ( 1987; ). Expression of competence genes in Bacillus subtilis. J Bacteriol 169, 3110–3117.
    [Google Scholar]
  4. Bongiorni, C., Fukushima, T., Wilson, A. C., Chiang, C., Mansilla, M. C., Hoch, J. A. & Perego, M. ( 2008; ). Dual promoters control the expression of the Bacillus anthracis virulence factor AtxA. J Bacteriol 190, 6483–6492.[CrossRef]
    [Google Scholar]
  5. Britton, R. A., Eichenberger, P., Gonzalez-Pastor, J. E., Fawcett, P., Monson, R., Losick, R. & Grossman, A. D. ( 2002; ). Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J Bacteriol 184, 4881–4890.[CrossRef]
    [Google Scholar]
  6. Carlin, F., Fricker, M., Pielaat, A., Heisterkamp, S., Shaheen, R., Salonen, M. S., Svensson, B., Nguyen-the, C. & Ehling-Schulz, M. ( 2006; ). Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Int J Food Microbiol 109, 132–138.[CrossRef]
    [Google Scholar]
  7. Chibazakura, T., Kawamura, F. & Takahashi, H. ( 1991; ). Differential regulation of spo0A transcription in Bacillus subtilis: glucose represses promoter switching at the initiation of sporulation. J Bacteriol 173, 2625–2632.
    [Google Scholar]
  8. Dietrich, R., Fella, C., Strich, S. & Martlbauer, E. ( 1999; ). Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus. Appl Environ Microbiol 65, 4470–4474.
    [Google Scholar]
  9. Dommel, M. K. ( 2008; ). Molecular characterization of the genetic locus responsible for cereulide toxin production in emetic Bacillus cereus. PhD thesis, Technische Universität München.
  10. Dunn, A. K. & Handelsman, J. ( 1999; ). A vector for promoter trapping in Bacillus cereus. Gene 226, 297–305.[CrossRef]
    [Google Scholar]
  11. Ehling-Schulz, M., Fricker, M. & Scherer, S. ( 2004; ). Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol Nutr Food Res 48, 479–487.[CrossRef]
    [Google Scholar]
  12. Ehling-Schulz, M., Vukov, N., Schulz, A., Shaheen, R., Andersson, M., Martlbauer, E. & Scherer, S. ( 2005; ). Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl Environ Microbiol 71, 105–113.[CrossRef]
    [Google Scholar]
  13. Ehling-Schulz, M., Fricker, M., Grallert, H., Rieck, P., Wagner, M. & Scherer, S. ( 2006; ). Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol 6, 20 [CrossRef]
    [Google Scholar]
  14. Fawcett, P., Eichenberger, P., Losick, R. & Youngman, P. ( 2000; ). The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 97, 8063–8068.[CrossRef]
    [Google Scholar]
  15. Ferrari, E., Howard, S. M. & Hoch, J. A. ( 1986; ). Effect of stage 0 sporulation mutations on subtilisin expression. J Bacteriol 166, 173–179.
    [Google Scholar]
  16. Finlay, W. J., Logan, N. A. & Sutherland, A. D. ( 1999; ). Semiautomated metabolic staining assay for Bacillus cereus emetic toxin. Appl Environ Microbiol 65, 1811–1812.
    [Google Scholar]
  17. Fouet, A. & Mock, M. ( 2006; ). Regulatory networks for virulence and persistence of Bacillus anthracis. Curr Opin Microbiol 9, 160–166.[CrossRef]
    [Google Scholar]
  18. Francis, K. P., Joh, D., Bellinger-Kawahara, C., Hawkinson, M. J., Purchio, T. F. & Contag, P. R. ( 2000; ). Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 68, 3594–3600.[CrossRef]
    [Google Scholar]
  19. Fricker, M., Reissbrodt, R. & Ehling-Schulz, M. ( 2007; ). Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacilllus cereus. Int J Food Microbiol 121, 27–34.
    [Google Scholar]
  20. Gohar, M., Faegri, K., Perchat, S., Ravnum, S., Okstad, O. A., Gominet, M., Kolsto, A. B. & Lereclus, D. ( 2008; ). The PlcR virulence regulon of Bacillus cereus. PLoS One 3, e2793 [CrossRef]
    [Google Scholar]
  21. Hadjifrangiskou, M., Chen, Y. & Koehler, T. M. ( 2007; ). The alternative sigma factor sigmaH is required for toxin gene expression by Bacillus anthracis. J Bacteriol 189, 1874–1883.[CrossRef]
    [Google Scholar]
  22. Hamon, M. A. & Lazazzera, B. A. ( 2001; ). The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42, 1199–1209.
    [Google Scholar]
  23. Jiang, M., Shao, W., Perego, M. & Hoch, J. A. ( 2000; ). Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38, 535–542.[CrossRef]
    [Google Scholar]
  24. Magarvey, N. A., Ehling-Schulz, M. & Walsh, C. T. ( 2006; ). Characterization of the cereulide NRPS alpha-hydroxy acid specifying modules: activation of alpha-keto acids and chiral reduction on the assembly line. J Am Chem Soc 128, 10698–10699.[CrossRef]
    [Google Scholar]
  25. Marahiel, M. A., Nakano, M. M. & Zuber, P. ( 1993; ). Regulation of peptide antibiotic production in Bacillus. Mol Microbiol 7, 631–636.[CrossRef]
    [Google Scholar]
  26. Martineau, F., Picard, F. J., Roy, P. H., Ouellette, M. & Bergeron, M. G. ( 1996; ). Species-specific and ubiquitous DNA-based assays for rapid identification of Staphylococcus epidermidis. J Clin Microbiol 34, 2888–2893.
    [Google Scholar]
  27. Mesnage, S., Tosi-Couture, E., Mock, M., Gounon, P. & Fouet, A. ( 1997; ). Molecular characterization of the Bacillus anthracis main S-layer component: evidence that it is the major cell-associated antigen. Mol Microbiol 23, 1147–1155.[CrossRef]
    [Google Scholar]
  28. Mignot, T., Mock, M., Robichon, D., Landier, A., Lereclus, D. & Fouet, A. ( 2001; ). The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol 42, 1189–1198.
    [Google Scholar]
  29. Mikkola, R., Saris, N. E., Grigoriev, P. A., Andersson, M. A. & Salkinoja-Salonen, M. S. ( 1999; ). Ionophoretic properties and mitochondrial effects of cereulide: the emetic toxin of B. cereus. Eur J Biochem 263, 112–117.[CrossRef]
    [Google Scholar]
  30. Molle, V., Fujita, M., Jensen, S. T., Eichenberger, P., Gonzalez-Pastor, J. E., Liu, J. S. & Losick, R. ( 2003; ). The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50, 1683–1701.[CrossRef]
    [Google Scholar]
  31. Okstad, O. A., Gominet, M., Purnelle, B., Rose, M., Lereclus, D. & Kolsto, A. B. ( 1999; ). Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145, 3129–3138.
    [Google Scholar]
  32. O'Reilly, M. & Devine, K. M. ( 1997; ). Expression of AbrB, a transition state regulator from Bacillus subtilis, is growth phase dependent in a manner resembling that of Fis, the nucleoid binding protein from Escherichia coli. J Bacteriol 179, 522–529.
    [Google Scholar]
  33. Perego, M. & Hoch, J. A. ( 2008; ). Commingling regulatory systems following acquisition of virulence plasmids by Bacillus anthracis. Trends Microbiol 16, 215–221.[CrossRef]
    [Google Scholar]
  34. Pezard, C., Berche, P. & Mock, M. ( 1991; ). Contribution of individual toxin components to virulence of Bacillus anthracis. Infect Immun 59, 3472–3477.
    [Google Scholar]
  35. Pfaffl, M. W. ( 2001; ). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45 [CrossRef]
    [Google Scholar]
  36. Pfaffl, M. W., Horgan, G. W. & Dempfle, L. ( 2002; ). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30, e36 [CrossRef]
    [Google Scholar]
  37. Phillips, Z. E. & Strauch, M. A. ( 2002; ). Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci 59, 392–402.[CrossRef]
    [Google Scholar]
  38. Predich, M., Nair, G. & Smith, I. ( 1992; ). Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing sigma H. J Bacteriol 174, 2771–2778.
    [Google Scholar]
  39. Rasko, D. A., Ravel, J., Okstad, O. A., Helgason, E., Cer, R. Z., Jiang, L., Shores, K. A., Fouts, D. E., Tourasse, N. J. & other authors ( 2004; ). The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32, 977–988.[CrossRef]
    [Google Scholar]
  40. Rasko, D. A., Rosovitz, M. J., Okstad, O. A., Fouts, D. E., Jiang, L., Cer, R. Z., Kolsto, A. B., Gill, S. R. & Ravel, J. ( 2007; ). Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus-group plasmids, including Bacillus anthracis pXO1. J Bacteriol 189, 52–64.[CrossRef]
    [Google Scholar]
  41. Saile, E. & Koehler, T. M. ( 2002; ). Control of anthrax toxin gene expression by the transition state regulator abrB. J Bacteriol 184, 370–380.[CrossRef]
    [Google Scholar]
  42. Sanchez, A. & Olmos, J. ( 2004; ). Bacillus subtilis transcriptional regulators interaction. Biotechnol Lett 26, 403–407.[CrossRef]
    [Google Scholar]
  43. Slamti, L., Perchat, S., Gominet, M., Vilas-Bôas, G., Fouet, A., Mock, M., Sanchis, V., Chaufaux, J., Gohar, M. & Lereclus, D. ( 2004; ). Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic. J Bacteriol 186, 3531–3538.[CrossRef]
    [Google Scholar]
  44. Stenfors Arnesen, L. P., Fagerlund, A. & Granum, P. E. ( 2008; ). From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32, 579–606.[CrossRef]
    [Google Scholar]
  45. Strauch, M., Webb, V., Spiegelman, G. & Hoch, J. A. ( 1990; ). The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci U S A 87, 1801–1805.[CrossRef]
    [Google Scholar]
  46. Trach, K. A. & Hoch, J. A. ( 1993; ). Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol Microbiol 8, 69–79.[CrossRef]
    [Google Scholar]
  47. Trieu-Cuot, P., Carlier, C., Martin, P. & Courvalin, P. ( 1987; ). Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol Lett 48, 289–294.[CrossRef]
    [Google Scholar]
  48. Trieu-Cuot, P., Carlier, C., Poyart-Salmeron, C. & Courvalin, P. ( 1991; ). An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria. Gene 106, 21–27.[CrossRef]
    [Google Scholar]
  49. Weir, J., Predich, M., Dubnau, E., Nair, G. & Smith, I. ( 1991; ). Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor. J Bacteriol 173, 521–529.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024125-0
Loading
/content/journal/micro/10.1099/mic.0.024125-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 922 - 931

Oligonucleotides used for PCR and RT-qPCR [ PDF] (22 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error