1887

Abstract

Systematic screening of secretion proteins using an approach based on the completely sequenced genome of R revealed 405 candidate signal peptides, 108 of which were able to heterologously secrete an active-form -amylase derived from . These comprised 90 general secretory (Sec)-type, 10 twin-arginine translocator (Tat)-type and eight Sec-type with presumptive lipobox peptides. Only Sec- and Tat-type signals directed high-efficiency secretion. In two assays, 11 of these signals resulted in 50- to 150-fold increased amounts of secreted -amylase compared with the well-known corynebacterial secretory protein PS2. While the presence of an AXA motif at the cleavage sites was readily apparent, it was the presence of a glutamine residue adjacent to the cleavage site that may affect secretion efficiency.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024075-0
2009-03-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/741.html?itemId=/content/journal/micro/10.1099/mic.0.024075-0&mimeType=html&fmt=ahah

References

  1. Akita M., Sasaki S., Matsuyama S., Mizushima S.. 1990; SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. J Biol Chem265:8164–8169
    [Google Scholar]
  2. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795
    [Google Scholar]
  3. Berks B. C., Sargent F., Palmer T.. 2000; The Tat protein export pathway. Mol Microbiol35:260–274
    [Google Scholar]
  4. Billman-Jacobe H., Wang L., Kortt A., Stewart D., Radford A.. 1995; Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl Environ Microbiol61:1610–1613
    [Google Scholar]
  5. Brand S., Niehaus K., Puhler A., Kalinowski J.. 2003; Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Arch Microbiol180:33–44
    [Google Scholar]
  6. Brennan P. J., Nikaido H.. 1995; The envelope of mycobacteria. Annu Rev Biochem64:29–63
    [Google Scholar]
  7. Briggs M. S., Cornell D. G., Dluhy R. A., Gierasch L. M.. 1986; Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science233:206–208
    [Google Scholar]
  8. Chen M., Nagarajan V.. 1994; Effect of alteration of charged residues at the N termini of signal peptides on protein export in Bacillus subtilis. J Bacteriol176:5796–5801
    [Google Scholar]
  9. Cline K., Henry R., Li C., Yuan J.. 1993; Multiple pathways for protein transport into or across the thylakoid membrane. EMBO J12:4105–4114
    [Google Scholar]
  10. Collins M. D., Goodfellow M., Minnikin D. E.. 1982; A survey of the structures of mycolic acids in Corynebacterium and related taxa. J Gen Microbiol128:129–149
    [Google Scholar]
  11. Cristobal S., de Gier J. W., Nielsen H., von Heijne G.. 1999; Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J18:2982–2990
    [Google Scholar]
  12. Dalbey R. E., Von Heijne G.. 1992; Signal peptidases in prokaryotes and eukaryotes – a new protease family. Trends Biochem Sci17:474–478
    [Google Scholar]
  13. Dalbey R. E., Lively M. O., Bron S., van Dijl J. M.. 1997; The chemistry and enzymology of the type I signal peptidases. Protein Sci6:1129–1138
    [Google Scholar]
  14. Date M., Yokoyama K., Umezawa Y., Matsui H., Kikuchi Y.. 2003; Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl Environ Microbiol69:3011–3014
    [Google Scholar]
  15. Date M., Itaya H., Matsui H., Kikuchi Y.. 2006; Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett Appl Microbiol42:66–70
    [Google Scholar]
  16. Draper P.. 1998; The outer parts of the mycobacterial envelope as permeability barriers. Front Biosci3:D1253–D1261
    [Google Scholar]
  17. Gennity J., Goilstein J., Inouye M.. 1990; Signal peptide mutants of Escherichia coli. J Bioenerg Biomembr22:233–269
    [Google Scholar]
  18. Hansmeier N., Chao T. C., Pühler A., Tauch A., Kalinowski J.. 2006a; The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032. Proteomics6:233–250
    [Google Scholar]
  19. Hansmeier N., Chao T. C., Kalinowski J., Pühler A., Tauch A.. 2006b; Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics6:2465–2476
    [Google Scholar]
  20. Hartmann M., Barsch A., Niehaus K., Pühler A., Tauch A., Kalinowski J.. 2004; The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. Arch Microbiol182:299–312
    [Google Scholar]
  21. Hermann T., Pfefferle W., Baumann C., Busker E., Schaffer S., Bott M., Sahm H., Dusch N., Kalinowski J.. other authors 2001; Proteome analysis of Corynebacterium glutamicum. Electrophoresis22:1712–1723
    [Google Scholar]
  22. Inouye S., Franceschini T., Sato M., Itakura K., Inouye M.. 1983; Prolipoprotein signal peptidase of Escherichia coli requires a cysteine residue at the cleavage site. EMBO J2:87–91
    [Google Scholar]
  23. Joliff G., Mathieu L., Hahn V., Bayan N., Duchiron F., Renaud M., Schechter E., Leblon G.. 1992; Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: the deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex. Mol Microbiol6:2349–2362
    [Google Scholar]
  24. Kacem R., De Sousa-D'Auria C., Tropis M., Chami M., Gounon P., Leblon G., Houssin C., Daffé M.. 2004; Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. Microbiology150:73–84
    [Google Scholar]
  25. Kikuchi Y., Date M., Itaya H., Matsui K., Wu L. F.. 2006; Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol72:7183–7192
    [Google Scholar]
  26. Kikuchi Y., Itaya H., Date M., Matsui K., Wu L. F.. 2007; Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol78:67–74
    [Google Scholar]
  27. Kinoshita S.. 1985; Glutamic acid bacteria. In Biology of Industrial Microorganisms pp115–146 Edited by Demain A. L., Solomon N. A.. London: Cummings;
    [Google Scholar]
  28. Kurusu Y., Kainuma M., Inui M., Satoh Y., Yukawa H.. 1990; Electroporation-transformation system for coryneform bacteria by auxotrophic complementation. Agric Biol Chem54:443–447
    [Google Scholar]
  29. Liebl W., Sinskey A. J.. 1990; Coryneform expression and secretion system. USA patent 4965197
  30. Liebl W., Sinskey A. J., Schleifer K. H.. 1992; Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J Bacteriol174:1854–1861
    [Google Scholar]
  31. Malumbres M., Mateos L. M., Martin J. F.. 1995; Microorganisms for amino acid production: Escherichia coli and corynebacteria. In Food Biotechnology Microorganisms pp423–469 Edited by Hui Y. H., Kachatourians G. G.. New York: VCH Publishers;
    [Google Scholar]
  32. Meissner D., Vollstedt A., van Dijl J. M., Freudl R.. 2007; Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. Appl Microbiol Biotechnol76:633–642
    [Google Scholar]
  33. Minnikin D. E.. 1982; Lipids: complex lipids, their chemistry, biosynthesis and roles. In The Biology of the Mycobacteria vol. 1 pp95–184 Edited by Ratledge C., Stanford J. L. London: Academic Press;
    [Google Scholar]
  34. Mori H., Cline K.. 2001; Post-translational protein translocation into thylakoids by the Sec and ΔpH-dependent pathways. Biochim Biophys Acta 1541;80–90
    [Google Scholar]
  35. Nishimura T., Teramoto H., Vertes A. A., Inui M., Yukawa H.. 2008; ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J Bacteriol190:3264–3273
    [Google Scholar]
  36. Paetzel M., Dalbey R. E., Strynadka N. C.. 1998; Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor. Nature396:186–190
    [Google Scholar]
  37. Paetzel M., Karla A., Strynadka N. C., Dalbey R. E.. 2002; Signal peptidases. Chem Rev102:4549–4580
    [Google Scholar]
  38. Peyret J. L., Bayan N., Joliff G., Gulik-Krzywicki T., Mathieu L., Schechter E., Leblon G.. 1993; Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol9:97–109
    [Google Scholar]
  39. Pohlschroder M., Prinz W. A., Hartmann E., Beckwith J.. 1997; Protein translocation in the three domains of life: variations on a theme. Cell91:563–566
    [Google Scholar]
  40. Pugsley A. P.. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev57:50–108
    [Google Scholar]
  41. Qi H. Y., Sankaran K., Gan K., Wu H. C.. 1995; Structure–function relationship of bacterial prolipoprotein diacylglyceryl transferase: functionally significant conserved regions. J Bacteriol177:6820–6824
    [Google Scholar]
  42. Riezman H.. 1997; The ins and outs of protein translocation. Science278:1728–1729
    [Google Scholar]
  43. Salim K., Haedens V., Content J., Leblon G., Huygen K.. 1997; Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl Environ Microbiol63:4392–4400
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Sankaran K., Wu H. C.. 1995; Bacterial prolipoprotein signal peptidase. Methods Enzymol248:169–180
    [Google Scholar]
  46. Schatz G., Dobberstein B.. 1996; Common principles of protein translocation across membranes. Science271:1519–1526
    [Google Scholar]
  47. Smith M. D., Flickinger J. L., Lineberger D. W., Schmidt B.. 1986; Protoplast transformation in coryneform bacteria and introduction of an α-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl Environ Microbiol51:634–639
    [Google Scholar]
  48. Stanley N. R., Palmer T., Berks B. C.. 2000; The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem275:11591–11596
    [Google Scholar]
  49. Sutcliffe I. C., Harrington D. J.. 2002; Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology148:2065–2077
    [Google Scholar]
  50. Tjalsma H., Bolhuis A., Jongbloed J. D., Bron S., van Dijl J. M.. 2000; Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev64:515–547
    [Google Scholar]
  51. Yen M. R., Tseng Y. H., Nguyen E. H., Wu L. F., Saier M. H. Jr. 2002; Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol177:441–450
    [Google Scholar]
  52. Yukawa H., Omumasaba C. A., Nonaka H., Kos P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J.. other authors 2007; Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology153:1042–1058
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024075-0
Loading
/content/journal/micro/10.1099/mic.0.024075-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error