1887

Abstract

, an obligate human pathogen, remains a leading cause of meningitis and fatal sepsis. Meningococci are known to secrete a family of proteins, such as FrpC, with sequence similarity to the repeat-in-toxin (RTX) proteins via the type I secretion system. The meningococcal type I secretion proteins are encoded at two distant genetic loci, () and / (/), and are separated from the RTX toxin-like substrates. We have characterized the promoter elements of both and by primer extension and reporter fusions and revealed the growth phase-dependent upregulation of both genes. In addition, we showed that the MisR/MisS two-component system negatively regulates the expression of and /. Direct binding of MisR to and promoters was demonstrated by electrophoretic mobility shift assay (EMSA), and DNase I protection assays identified MisR binding sites overlapping the promoter elements. Direct repression of transcription by MisR was supported by transcription assays. Mutations in the MisR/S system affected, but did not eliminate, the growth phase-dependent upregulation of , suggesting additional regulatory mechanisms. Increased secretion of RTX toxin-like proteins was detected in the cell-free media from mutant cultures, indicating that the amounts of extracellular RTX toxin-like proteins are, in part, controlled by the abundance of the type I secretion apparatus. This is, to our knowledge, the first example of a two-component system mediating secretion of cytotoxin family proteins by controlling expression of the type I secretion proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023945-0
2009-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1588.html?itemId=/content/journal/micro/10.1099/mic.0.023945-0&mimeType=html&fmt=ahah

References

  1. Baca-DeLancey R. R., South M. M., Ding X., Rather P. N. 1999; Escherichia coli genes regulated by cell-to-cell signaling. Proc Natl Acad Sci U S A 96:4610–4614
    [Google Scholar]
  2. Bailey M. J., Hughes C., Koronakis V. 1996; Increased distal gene transcription by the elongation factor RfaH, a specialized homologue of NusG. Mol Microbiol 22:729–737
    [Google Scholar]
  3. Bailey M. J., Hughes C., Koronakis V. 1997; RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Mol Microbiol 26:845–851
    [Google Scholar]
  4. Craig N. L., Nash H. A. 1984; E. coli integration host factor binds to specific sites in DNA. Cell 39:707–716
    [Google Scholar]
  5. Delany I., Rappuoli R., Scarlato V. 2004; Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis . Mol Microbiol 52:1081–1090
    [Google Scholar]
  6. Dietrich G., Kurz S., Hubner C., Aepinus C., Theiss S., Guckenberger M., Panzner U., Weber J., Frosch M. 2003; Transcriptome analysis of Neisseria meningitidis during infection. J Bacteriol 185:155–164
    [Google Scholar]
  7. Dove J. E., Yasukawa K., Tinsley C. R., Nassif X. 2003; Production of the signalling molecule, autoinducer-2, by Neisseria meningitidis : lack of evidence for a concerted transcriptional response. Microbiology 149:1859–1869
    [Google Scholar]
  8. Forman S., Linhartova I., Osicka R., Nassif X., Sebo P., Pelicic V. 2003; Neisseria meningitidis RTX proteins are not required for virulence in infant rats. Infect Immun 71:2253–2257
    [Google Scholar]
  9. Frey J., Kuhnert P. 2002; RTX toxins in Pasteurellaceae. Int J Med Microbiol 292:149–158
    [Google Scholar]
  10. Hobbs M., Reeves P. R. 1994; The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters. Mol Microbiol 12:855–856
    [Google Scholar]
  11. Hoch J. A. 2000; Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170
    [Google Scholar]
  12. Holland I. B., Schmitt L., Young J. 2005; Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review. Mol Membr Biol 22:29–39
    [Google Scholar]
  13. Janik A., Juni E., Heym G. A. 1976; Genetic transformation as a tool for detection of Neisseria gonorrhoeae . J Clin Microbiol 4:71–81
    [Google Scholar]
  14. Johnson C. R., Newcombe J., Thorne S., Borde H. A., Eales-Reynolds L. J., Gorringe A. R., Funnell S. G., McFadden J. J. 2001; Generation and characterization of a PhoP homologue mutant of Neisseria meningitidis . Mol Microbiol 39:1345–1355
    [Google Scholar]
  15. Kamal N., Rouquette-Loughlin C., Shafer W. M. 2007; The TolC-like protein of Neisseria meningitidis is required for extracellular production of the repeats-in-toxin toxin FrpC but not for resistance to antimicrobials recognized by the Mtr efflux pump system. Infect Immun 75:6008–6012
    [Google Scholar]
  16. Klee S. R., Nassif X., Kusecek B., Merker P., Beretti J. L., Achtman M., Tinsley C. R. 2000; Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae . Infect Immun 68:2082–2095
    [Google Scholar]
  17. Koronakis V., Cross M., Hughes C. 1989; Transcription antitermination in an Escherichia coli haemolysin operon is directed progressively by cis -acting DNA sequences upstream of the promoter region. Mol Microbiol 3:1397–1404
    [Google Scholar]
  18. Kurz S., Hubner C., Aepinus C., Theiss S., Guckenberger M., Panzner U., Weber J., Frosch M., Dietrich G. 2003; Transcriptome-based antigen identification for Neisseria meningitidis . Vaccine 21:768–775
    [Google Scholar]
  19. Lally E. T., Hill R. B., Kieba I. R., Korostoff J. 1999; The interaction between RTX toxins and target cells. Trends Microbiol 7:356–361
    [Google Scholar]
  20. Lazazzera B. A. 2000; Quorum sensing and starvation: signals for entry into stationary phase. Curr Opin Microbiol 3:177–182
    [Google Scholar]
  21. Leeds J. A., Welch R. A. 1997; Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD : RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism. J Bacteriol 179:3519–3527
    [Google Scholar]
  22. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408
    [Google Scholar]
  23. Newcombe J., Eales-Reynolds L. J., Wootton L., Gorringe A. R., Funnell S. G., Taylor S. C., McFadden J. J. 2004; Infection with an avirulent phoP mutant of Neisseria meningitidis confers broad cross-reactive immunity. Infect Immun 72:338–344
    [Google Scholar]
  24. Osicka R., Kalmusova J., Krizova P., Sebo P. 2001; Neisseria meningitidis RTX protein FrpC induces high levels of serum antibodies during invasive disease: polymorphism of frpC alleles and purification of recombinant FrpC. Infect Immun 69:5509–5519
    [Google Scholar]
  25. Osicka R., Prochazkova K., Sulc M., Linhartova I., Havlicek V., Sebo P. 2004; A novel “clip-and-link” activity of repeat in toxin (RTX) proteins from Gram-negative pathogens. Covalent protein cross-linking by an Asp-Lys isopeptide bond upon calcium-dependent processing at an Asp-Pro bond. J Biol Chem 279:24944–24956
    [Google Scholar]
  26. Overton T. W., Whitehead R., Li Y., Snyder L. A., Saunders N. J., Smith H., Cole J. A. 2006; Coordinated regulation of the Neisseria gonorrhoeae -truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ-NarP. J Biol Chem 281:33115–33126
    [Google Scholar]
  27. Parkhill J., Achtman M., James K. D., Bentley S. D., Churcher C., Klee S. R., Morelli G., Basham D., Brown D. other authors 2000; Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404:502–506
    [Google Scholar]
  28. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313
    [Google Scholar]
  29. Roberts S. A., Churchward G. G., Scott J. R. 2007; Unraveling the regulatory network in Streptococcus pyogenes : the global response regulator CovR represses rivR directly. J Bacteriol 189:1459–1463
    [Google Scholar]
  30. Skaar E. P., Lazio M. P., Seifert H. S. 2002; Roles of the recJ and recN genes in homologous recombination and DNA repair pathways of Neisseria gonorrhoeae . J Bacteriol 184:919–927
    [Google Scholar]
  31. Stabler R. A., Marsden G. L., Witney A. A., Li Y., Bentley S. D., Tang C. M., Hinds J. 2005; Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species. Microbiology 151:2907–2922
    [Google Scholar]
  32. Stephens D. S. 2007; Conquering the meningococcus. FEMS Microbiol Rev 31:3–14
    [Google Scholar]
  33. Stephens D. S., Swartley J. S., Kathariou S., Morse S. A. 1991; Insertion of Tn 916 in Neisseria meningitidis resulting in loss of group B capsular polysaccharide. Infect Immun 59:4097–4102
    [Google Scholar]
  34. Stephens D. S., Greenwood B., Brandtzaeg P. 2007; Epidemic meningitis, meningococcaemia, and Neisseria meningitidis . Lancet 369:2196–2210
    [Google Scholar]
  35. Tettelin H., Saunders N. J., Heidelberg J., Jeffries A. C., Nelson K. E., Eisen J. A., Ketchum K. A., Hood D. W., Peden J. F. other authors 2000; Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:1809–1815
    [Google Scholar]
  36. Thompson S. A., Wang L. L., Sparling P. F. 1993a; Cloning and nucleotide sequence of frpC , a second gene from Neisseria meningitidis encoding a protein similar to RTX cytotoxins. Mol Microbiol 9:85–96
    [Google Scholar]
  37. Thompson S. A., Wang L. L., West A., Sparling P. F. 1993b; Neisseria meningitidis produces iron-regulated proteins related to the RTX family of exoproteins. J Bacteriol 175:811–818
    [Google Scholar]
  38. Tzeng Y.-L., Stephens D. S. 2000; Epidemiology and pathogenesis of Neisseria meningitidis . Microbes Infect 2:687–700
    [Google Scholar]
  39. Tzeng Y. L., Swartley J. S., Miller Y. K., Nisbet R. E., Liu L. J., Ahn J. H., Stephens D. S. 2001; Transcriptional regulation of divergent capsule biosynthesis and transport operon promoters in serogroup B Neisseria meningitidis . Infect Immun 69:2502–2511
    [Google Scholar]
  40. Tzeng Y. L., Datta A., Ambrose K. D., Davies J. K., Carlson R. W., Stephens D. S., Kahler C. M. 2004; The MisR/MisS two-component regulatory system influences inner core structure and immunotype of lipooligosaccharide in Neisseria meningitidis . J Biol Chem 279:35053–35062
    [Google Scholar]
  41. Tzeng Y. L., Zhou X., Bao S., Zhao S., Noble C., Stephens D. S. 2006; Autoregulation of the MisR/MisS two-component signal transduction system in Neisseria meningitidis . J Bacteriol 188:5055–5065
    [Google Scholar]
  42. Tzeng Y. L., Kahler C. M., Zhang X., Stephens D. S. 2008; MisR/MisS two-component regulon in Neisseria meningitidis . Infect Immun 76:704–716
    [Google Scholar]
  43. van Ulsen P., Tommassen J. 2006; Protein secretion and secreted proteins in pathogenic Neisseriaceae . FEMS Microbiol Rev 30:292–319
    [Google Scholar]
  44. Wandersman C., Delepelaire P. 1990; TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci U S A 87:4776–4780
    [Google Scholar]
  45. Welch R. A. 2001; RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol 257:85–111
    [Google Scholar]
  46. Whitehead N. A., Barnard A. M., Slater H., Simpson N. J., Salmond G. P. 2001; Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404
    [Google Scholar]
  47. Wooldridge K. G., Kizil M., Wells D. B., Ala'aldeen D. A. 2005; Unusual genetic organization of a functional type I protein secretion system in Neisseria meningitidis . Infect Immun 73:5554–5567
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023945-0
Loading
/content/journal/micro/10.1099/mic.0.023945-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error