1887

Abstract

, an obligate human pathogen, remains a leading cause of meningitis and fatal sepsis. Meningococci are known to secrete a family of proteins, such as FrpC, with sequence similarity to the repeat-in-toxin (RTX) proteins via the type I secretion system. The meningococcal type I secretion proteins are encoded at two distant genetic loci, () and / (/), and are separated from the RTX toxin-like substrates. We have characterized the promoter elements of both and by primer extension and reporter fusions and revealed the growth phase-dependent upregulation of both genes. In addition, we showed that the MisR/MisS two-component system negatively regulates the expression of and /. Direct binding of MisR to and promoters was demonstrated by electrophoretic mobility shift assay (EMSA), and DNase I protection assays identified MisR binding sites overlapping the promoter elements. Direct repression of transcription by MisR was supported by transcription assays. Mutations in the MisR/S system affected, but did not eliminate, the growth phase-dependent upregulation of , suggesting additional regulatory mechanisms. Increased secretion of RTX toxin-like proteins was detected in the cell-free media from mutant cultures, indicating that the amounts of extracellular RTX toxin-like proteins are, in part, controlled by the abundance of the type I secretion apparatus. This is, to our knowledge, the first example of a two-component system mediating secretion of cytotoxin family proteins by controlling expression of the type I secretion proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023945-0
2009-05-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1588.html?itemId=/content/journal/micro/10.1099/mic.0.023945-0&mimeType=html&fmt=ahah

References

  1. Baca-DeLancey, R. R., South, M. M., Ding, X. & Rather, P. N. ( 1999; ). Escherichia coli genes regulated by cell-to-cell signaling. Proc Natl Acad Sci U S A 96, 4610–4614.[CrossRef]
    [Google Scholar]
  2. Bailey, M. J., Hughes, C. & Koronakis, V. ( 1996; ). Increased distal gene transcription by the elongation factor RfaH, a specialized homologue of NusG. Mol Microbiol 22, 729–737.[CrossRef]
    [Google Scholar]
  3. Bailey, M. J., Hughes, C. & Koronakis, V. ( 1997; ). RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Mol Microbiol 26, 845–851.[CrossRef]
    [Google Scholar]
  4. Craig, N. L. & Nash, H. A. ( 1984; ). E. coli integration host factor binds to specific sites in DNA. Cell 39, 707–716.[CrossRef]
    [Google Scholar]
  5. Delany, I., Rappuoli, R. & Scarlato, V. ( 2004; ). Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 52, 1081–1090.[CrossRef]
    [Google Scholar]
  6. Dietrich, G., Kurz, S., Hubner, C., Aepinus, C., Theiss, S., Guckenberger, M., Panzner, U., Weber, J. & Frosch, M. ( 2003; ). Transcriptome analysis of Neisseria meningitidis during infection. J Bacteriol 185, 155–164.[CrossRef]
    [Google Scholar]
  7. Dove, J. E., Yasukawa, K., Tinsley, C. R. & Nassif, X. ( 2003; ). Production of the signalling molecule, autoinducer-2, by Neisseria meningitidis: lack of evidence for a concerted transcriptional response. Microbiology 149, 1859–1869.[CrossRef]
    [Google Scholar]
  8. Forman, S., Linhartova, I., Osicka, R., Nassif, X., Sebo, P. & Pelicic, V. ( 2003; ). Neisseria meningitidis RTX proteins are not required for virulence in infant rats. Infect Immun 71, 2253–2257.[CrossRef]
    [Google Scholar]
  9. Frey, J. & Kuhnert, P. ( 2002; ). RTX toxins in Pasteurellaceae. Int J Med Microbiol 292, 149–158.[CrossRef]
    [Google Scholar]
  10. Hobbs, M. & Reeves, P. R. ( 1994; ). The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters. Mol Microbiol 12, 855–856.[CrossRef]
    [Google Scholar]
  11. Hoch, J. A. ( 2000; ). Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3, 165–170.[CrossRef]
    [Google Scholar]
  12. Holland, I. B., Schmitt, L. & Young, J. ( 2005; ). Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol 22, 29–39.[CrossRef]
    [Google Scholar]
  13. Janik, A., Juni, E. & Heym, G. A. ( 1976; ). Genetic transformation as a tool for detection of Neisseria gonorrhoeae. J Clin Microbiol 4, 71–81.
    [Google Scholar]
  14. Johnson, C. R., Newcombe, J., Thorne, S., Borde, H. A., Eales-Reynolds, L. J., Gorringe, A. R., Funnell, S. G. & McFadden, J. J. ( 2001; ). Generation and characterization of a PhoP homologue mutant of Neisseria meningitidis. Mol Microbiol 39, 1345–1355.[CrossRef]
    [Google Scholar]
  15. Kamal, N., Rouquette-Loughlin, C. & Shafer, W. M. ( 2007; ). The TolC-like protein of Neisseria meningitidis is required for extracellular production of the repeats-in-toxin toxin FrpC but not for resistance to antimicrobials recognized by the Mtr efflux pump system. Infect Immun 75, 6008–6012.[CrossRef]
    [Google Scholar]
  16. Klee, S. R., Nassif, X., Kusecek, B., Merker, P., Beretti, J. L., Achtman, M. & Tinsley, C. R. ( 2000; ). Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae. Infect Immun 68, 2082–2095.[CrossRef]
    [Google Scholar]
  17. Koronakis, V., Cross, M. & Hughes, C. ( 1989; ). Transcription antitermination in an Escherichia coli haemolysin operon is directed progressively by cis-acting DNA sequences upstream of the promoter region. Mol Microbiol 3, 1397–1404.[CrossRef]
    [Google Scholar]
  18. Kurz, S., Hubner, C., Aepinus, C., Theiss, S., Guckenberger, M., Panzner, U., Weber, J., Frosch, M. & Dietrich, G. ( 2003; ). Transcriptome-based antigen identification for Neisseria meningitidis. Vaccine 21, 768–775.[CrossRef]
    [Google Scholar]
  19. Lally, E. T., Hill, R. B., Kieba, I. R. & Korostoff, J. ( 1999; ). The interaction between RTX toxins and target cells. Trends Microbiol 7, 356–361.[CrossRef]
    [Google Scholar]
  20. Lazazzera, B. A. ( 2000; ). Quorum sensing and starvation: signals for entry into stationary phase. Curr Opin Microbiol 3, 177–182.[CrossRef]
    [Google Scholar]
  21. Leeds, J. A. & Welch, R. A. ( 1997; ). Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism. J Bacteriol 179, 3519–3527.
    [Google Scholar]
  22. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  23. Newcombe, J., Eales-Reynolds, L. J., Wootton, L., Gorringe, A. R., Funnell, S. G., Taylor, S. C. & McFadden, J. J. ( 2004; ). Infection with an avirulent phoP mutant of Neisseria meningitidis confers broad cross-reactive immunity. Infect Immun 72, 338–344.[CrossRef]
    [Google Scholar]
  24. Osicka, R., Kalmusova, J., Krizova, P. & Sebo, P. ( 2001; ). Neisseria meningitidis RTX protein FrpC induces high levels of serum antibodies during invasive disease: polymorphism of frpC alleles and purification of recombinant FrpC. Infect Immun 69, 5509–5519.[CrossRef]
    [Google Scholar]
  25. Osicka, R., Prochazkova, K., Sulc, M., Linhartova, I., Havlicek, V. & Sebo, P. ( 2004; ). A novel “clip-and-link” activity of repeat in toxin (RTX) proteins from Gram-negative pathogens. Covalent protein cross-linking by an Asp-Lys isopeptide bond upon calcium-dependent processing at an Asp-Pro bond. J Biol Chem 279, 24944–24956.[CrossRef]
    [Google Scholar]
  26. Overton, T. W., Whitehead, R., Li, Y., Snyder, L. A., Saunders, N. J., Smith, H. & Cole, J. A. ( 2006; ). Coordinated regulation of the Neisseria gonorrhoeae-truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ-NarP. J Biol Chem 281, 33115–33126.[CrossRef]
    [Google Scholar]
  27. Parkhill, J., Achtman, M., James, K. D., Bentley, S. D., Churcher, C., Klee, S. R., Morelli, G., Basham, D., Brown, D. & other authors ( 2000; ). Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506.[CrossRef]
    [Google Scholar]
  28. Prentki, P. & Krisch, H. M. ( 1984; ). In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29, 303–313.[CrossRef]
    [Google Scholar]
  29. Roberts, S. A., Churchward, G. G. & Scott, J. R. ( 2007; ). Unraveling the regulatory network in Streptococcus pyogenes: the global response regulator CovR represses rivR directly. J Bacteriol 189, 1459–1463.[CrossRef]
    [Google Scholar]
  30. Skaar, E. P., Lazio, M. P. & Seifert, H. S. ( 2002; ). Roles of the recJ and recN genes in homologous recombination and DNA repair pathways of Neisseria gonorrhoeae. J Bacteriol 184, 919–927.[CrossRef]
    [Google Scholar]
  31. Stabler, R. A., Marsden, G. L., Witney, A. A., Li, Y., Bentley, S. D., Tang, C. M. & Hinds, J. ( 2005; ). Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species. Microbiology 151, 2907–2922.[CrossRef]
    [Google Scholar]
  32. Stephens, D. S. ( 2007; ). Conquering the meningococcus. FEMS Microbiol Rev 31, 3–14.[CrossRef]
    [Google Scholar]
  33. Stephens, D. S., Swartley, J. S., Kathariou, S. & Morse, S. A. ( 1991; ). Insertion of Tn916 in Neisseria meningitidis resulting in loss of group B capsular polysaccharide. Infect Immun 59, 4097–4102.
    [Google Scholar]
  34. Stephens, D. S., Greenwood, B. & Brandtzaeg, P. ( 2007; ). Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369, 2196–2210.[CrossRef]
    [Google Scholar]
  35. Tettelin, H., Saunders, N. J., Heidelberg, J., Jeffries, A. C., Nelson, K. E., Eisen, J. A., Ketchum, K. A., Hood, D. W., Peden, J. F. & other authors ( 2000; ). Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815.[CrossRef]
    [Google Scholar]
  36. Thompson, S. A., Wang, L. L. & Sparling, P. F. ( 1993a; ). Cloning and nucleotide sequence of frpC, a second gene from Neisseria meningitidis encoding a protein similar to RTX cytotoxins. Mol Microbiol 9, 85–96.[CrossRef]
    [Google Scholar]
  37. Thompson, S. A., Wang, L. L., West, A. & Sparling, P. F. ( 1993b; ). Neisseria meningitidis produces iron-regulated proteins related to the RTX family of exoproteins. J Bacteriol 175, 811–818.
    [Google Scholar]
  38. Tzeng, Y.-L. & Stephens, D. S. ( 2000; ). Epidemiology and pathogenesis of Neisseria meningitidis. Microbes Infect 2, 687–700.[CrossRef]
    [Google Scholar]
  39. Tzeng, Y. L., Swartley, J. S., Miller, Y. K., Nisbet, R. E., Liu, L. J., Ahn, J. H. & Stephens, D. S. ( 2001; ). Transcriptional regulation of divergent capsule biosynthesis and transport operon promoters in serogroup B Neisseria meningitidis. Infect Immun 69, 2502–2511.[CrossRef]
    [Google Scholar]
  40. Tzeng, Y. L., Datta, A., Ambrose, K. D., Davies, J. K., Carlson, R. W., Stephens, D. S. & Kahler, C. M. ( 2004; ). The MisR/MisS two-component regulatory system influences inner core structure and immunotype of lipooligosaccharide in Neisseria meningitidis. J Biol Chem 279, 35053–35062.[CrossRef]
    [Google Scholar]
  41. Tzeng, Y. L., Zhou, X., Bao, S., Zhao, S., Noble, C. & Stephens, D. S. ( 2006; ). Autoregulation of the MisR/MisS two-component signal transduction system in Neisseria meningitidis. J Bacteriol 188, 5055–5065.[CrossRef]
    [Google Scholar]
  42. Tzeng, Y. L., Kahler, C. M., Zhang, X. & Stephens, D. S. ( 2008; ). MisR/MisS two-component regulon in Neisseria meningitidis. Infect Immun 76, 704–716.[CrossRef]
    [Google Scholar]
  43. van Ulsen, P. & Tommassen, J. ( 2006; ). Protein secretion and secreted proteins in pathogenic Neisseriaceae. FEMS Microbiol Rev 30, 292–319.[CrossRef]
    [Google Scholar]
  44. Wandersman, C. & Delepelaire, P. ( 1990; ). TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci U S A 87, 4776–4780.[CrossRef]
    [Google Scholar]
  45. Welch, R. A. ( 2001; ). RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol 257, 85–111.
    [Google Scholar]
  46. Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J. & Salmond, G. P. ( 2001; ). Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25, 365–404.[CrossRef]
    [Google Scholar]
  47. Wooldridge, K. G., Kizil, M., Wells, D. B. & Ala'aldeen, D. A. ( 2005; ). Unusual genetic organization of a functional type I protein secretion system in Neisseria meningitidis. Infect Immun 73, 5554–5567.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023945-0
Loading
/content/journal/micro/10.1099/mic.0.023945-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1588 - 1601

Primers used in this study [PDF file](31 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error