1887

Abstract

C-terminal deletion of the diacylglycerol kinase (Dgk) homologue of the cariogenic oral bacterium resulted in loss of aciduricity. To confirm the role of the C terminus of the Dgk homologue in aciduricity, various mutants of UA159 with a C-terminally truncated Dgk homologue were constructed. The deletion of one or two amino acid residues at the C terminus had no effect on the acid-tolerance properties of mutants. When further amino acid residues at the C terminus were removed, mutants became more acid-sensitive. The mutant with deletion of eight amino acid residues at the C terminus did not grow at pH 5.5, suggesting that the C-terminal tail of the Dgk homologue was indispensable for tolerance to acid stress in . Kinase activity assays revealed that deletion of the C-terminal amino acids of Dgk led to a reduction of kinase activity for undecaprenol. A truncated mutant that had completely lost kinase activity was unable to grow at pH 5.5. These results suggest that the acid tolerance of is closely related to kinase activity of the Dgk homologue. Additionally, the deletion mutant exhibited markedly reduced levels of smooth-surface carious lesions in pathogen-free rats, despite there being no difference between the mutant and the parental organism in the extent of total smooth surface plaque. The results suggest that Dgk activity may play a direct role in the virulence of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023812-0
2009-02-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/557.html?itemId=/content/journal/micro/10.1099/mic.0.023812-0&mimeType=html&fmt=ahah

References

  1. Chen, P., Novak, J., Qi, F. & Caufield, P. W. ( 1998; ). Diacylglycerol kinase is involved in regulation of expression of the lantibiotic mutacin II of Streptococcus mutans. J Bacteriol 180, 167–170.
    [Google Scholar]
  2. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  3. Hasin, M. & Kennedy, E. P. ( 1982; ). Role of phosphatidylethanolamine in the biosynthesis of pyrophosphoethanolamine residues in the lipopolysaccharide of Escherichia coli. J Biol Chem 257, 12475–12477.
    [Google Scholar]
  4. Keyes, P. H. ( 1958a; ). Dental caries in the molar teeth of rats. I. Distribution of lesions induced by high-carbohydrate low-fat diets. J Dent Res 37, 1077–1087.[CrossRef]
    [Google Scholar]
  5. Keyes, P. H. ( 1958b; ). Dental caries in the molar teeth of rats. II. A method for diagnosing and scoring several types of lesions simultaneously. J Dent Res 37, 1088–1099.[CrossRef]
    [Google Scholar]
  6. König, K. G., Marthaler, T. M. & Mühlemann, H. R. ( 1958; ). Methodik der kurzfristig erzeugten Rattenkaries. Dtsch Zahn Mund Kieferheilkd 29, 99–127 in German.
    [Google Scholar]
  7. Korithoski, B., Lévesque, C. M. & Cvitkovitch, D. G. ( 2007; ). Involvement of the detoxifying enzyme lactoylglutathione lyase in Streptococcus mutans aciduricity. J Bacteriol 189, 7586–7592.[CrossRef]
    [Google Scholar]
  8. Lis, M. & Kuramitsu, H. K. ( 2003; ). The stress-responsive dgk gene from Streptococcus mutans encodes a putative undecaprenol kinase activity. Infect Immun 71, 1938–1943.[CrossRef]
    [Google Scholar]
  9. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  10. Loesche, W. J. ( 1986; ). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50, 353–380.
    [Google Scholar]
  11. Moolenaar, W. H., Kruijer, W., Tilly, B. C., Verlaan, I., Bierman, A. J. & de Laat, S. W. ( 1986; ). Growth factor-like action of phosphatidic acid. Nature 323, 171–173.[CrossRef]
    [Google Scholar]
  12. Murayama, T. & Ui, M. ( 1987; ). Phosphatidic acid may stimulate membrane receptors mediating adenylate cyclase inhibition and phospholipid breakdown in 3T3 fibroblasts. J Biol Chem 262, 5522–5529.
    [Google Scholar]
  13. Nishizuka, Y. ( 1984; ). The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308, 693–698.[CrossRef]
    [Google Scholar]
  14. Perry, D., Wondrack, L. M. & Kuramitsu, H. K. ( 1983; ). Genetic transformation of putative cariogenic properties in Streptococcus mutans. Infect Immun 41, 722–727.
    [Google Scholar]
  15. Preiss, J., Loomis, C. R., Bishop, W. R., Stein, R., Niedel, J. E. & Bell, R. M. ( 1986; ). Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem 261, 8597–8600.
    [Google Scholar]
  16. Quivey, R. G., Kuhnert, W. L. & Hahn, K. ( 2001; ). Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med 12, 301–314.[CrossRef]
    [Google Scholar]
  17. Raetz, C. R. & Newman, K. F. ( 1978; ). Neutral lipid accumulation in the membranes of Escherichia coli mutants lacking diglyceride kinase. J Biol Chem 253, 3882–3887.
    [Google Scholar]
  18. Raetz, C. R. & Newman, K. F. ( 1979; ). Diglyceride kinase mutants of Escherichia coli: inner membrane association of 1,2-diglyceride and its relation to synthesis of membrane-derived oligosaccharides. J Bacteriol 137, 860–868.
    [Google Scholar]
  19. Regolati, B. & Hotz, P. ( 1972; ). Cariostatic effect of glycerophosphate. Helv Odontol Acta 16, 13–18.
    [Google Scholar]
  20. Rotering, H. & Raetz, C. R. ( 1983; ). Appearance of monoglyceride and triglyceride in the cell envelope of Escherichia coli mutants defective in diglyceride kinase. J Biol Chem 258, 8068–8073.
    [Google Scholar]
  21. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  22. Sanders, C. R., II, Czerski, L., Vinogradova, O., Badola, P., Song, D. & Smith, S. O. ( 1996; ). Escherichia coli diacylglycerol kinase is an α-helical polytopic membrane protein and can spontaneously insert into preformed lipid vesicles. Biochemistry 35, 8610–8618.[CrossRef]
    [Google Scholar]
  23. Senadheera, M. D., Guggenheim, B., Spatafora, G. A., Huang, Y. C., Choi, J., Hung, D. C., Treglown, J. S., Goodman, S. D., Ellen, R. P. & Cvitkovitch, D. G. ( 2005; ). A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187, 4064–4076.[CrossRef]
    [Google Scholar]
  24. Shibata, Y., Yamashita, Y., Nakano, Y. & Koga, T. ( 1999; ). Isolation and characterization of the rml gene homologs from Porphyromonas gingivalis. Oral Microbiol Immunol 14, 339–347.[CrossRef]
    [Google Scholar]
  25. Shibata, Y., Yamashita, Y., Ozaki, K., Nakano, Y. & Koga, T. ( 2002; ). Expression and characterization of streptococcal rgp genes required for rhamnan synthesis in Escherichia coli. Infect Immun 70, 2891–2898.[CrossRef]
    [Google Scholar]
  26. Shiroza, T. & Kuramitsu, H. K. ( 1993; ). Construction of a model secretion system for oral streptococci. Infect Immun 61, 3745–3755.
    [Google Scholar]
  27. Smith, R. L., O'Toole, J. F., Maguire, M. E. & Sanders, C. R., II ( 1994; ). Membrane topology of Escherichia coli diacylglycerol kinase. J Bacteriol 176, 5459–5465.
    [Google Scholar]
  28. Tanzer, J. M., Livingston, J. & Thompson, A. M. ( 2001; ). The microbiology of primary dental caries in humans. J Dent Educ 65, 1028–1037.
    [Google Scholar]
  29. Topham, M. K. & Prescott, S. M. ( 1999; ). Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem 274, 11447–11450.[CrossRef]
    [Google Scholar]
  30. Walsh, J. P., Loomis, C. R. & Bell, R. M. ( 1986; ). Regulation of diacylglycerol kinase biosynthesis in Escherichia coli. A trans-acting dgkR mutation increases transcription of the structural gene. J Biol Chem 261, 11021–11027.
    [Google Scholar]
  31. Wen, J., Chen, X. & Bowie, J. U. ( 1996; ). Exploring the allowed sequence space of a membrane protein. Nat Struct Biol 3, 141–148.[CrossRef]
    [Google Scholar]
  32. Yamashita, Y., Takehara, T. & Kuramitsu, H. K. ( 1993; ). Molecular characterization of a Streptococcus mutans mutant altered in environmental stress responses. J Bacteriol 175, 6220–6228.
    [Google Scholar]
  33. Yoshida, A. & Kuramitsu, H. K. ( 2002; ). Multiple Streptococcus mutans genes are involved in biofilm formation. Appl Environ Microbiol 68, 6283–6291.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023812-0
Loading
/content/journal/micro/10.1099/mic.0.023812-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error