1887

Abstract

We purified osmoregulated periplasmic glucans (OPGs) from serovar Typhimurium and found them to be composed of 100 % glucose with 2-linked glucose as the most abundant residue, with terminal glucose, 2,3-linked and 2,6-linked glucose also present in high quantities. The two structural genes for OPG biosynthesis, and , form a bicistronic operon, and insertion of a kanamycin resistance gene cassette into this operon resulted in a strain devoid of OPGs. The mutant strain was impaired in motility and growth under low osmolarity conditions. The mutation also resulted in a 2 log increase in the LD in mice compared to the wild-type strain SL1344. Inability to synthesize OPGs had no significant impact on the organism's lipopolysaccharide pattern or its ability to survive antimicrobial peptides-, detergent-, pH- and nutrient-stress conditions. We observed that the -defective strain respired at a reduced rate under acidic growth conditions (pH 5.0) and had lower ATP levels compared to the wild-type strain. These data indicate that OPGs of Typhimurium contribute towards mouse virulence as well as growth and motility under low osmolarity growth conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023747-0
2009-01-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/229.html?itemId=/content/journal/micro/10.1099/mic.0.023747-0&mimeType=html&fmt=ahah

References

  1. Alpuche Aranda C. M., Swanson J. A., Loomis W. P., Miller S. I.. 1992; Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci U S A89:10079–10083
    [Google Scholar]
  2. Arellano-Reynoso B., Lapaque N., Salcedo S., Briones G., Ciocchini A. E., Ugalde R. A., Moreno E., Moriyon I., Gorvel J.. 2005; Cyclic β-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol6:618–625
    [Google Scholar]
  3. Bearson S., Bearson B., Foster J. W.. 1997; Acid stress responses in enterobacteria. FEMS Microbiol Lett147:173–180
    [Google Scholar]
  4. Bhagwat A. A., Keister D. L.. 1995; Site-directed mutagenesis of the β(1,3)-(1,6)-glucan synthesis locus of Bradyrhizobium japonicum. Mol Plant Microbe Interact8:366–370
    [Google Scholar]
  5. Bhagwat A. A., Gross K. C., Tully R. E., Keister D. L.. 1996; β-Glucan synthesis in Bradyrhizobium japonicum: Characterization of a new locus ( ndvC) influencing β-(1,6)-linkages. J Bacteriol178:4635–4642
    [Google Scholar]
  6. Bhagwat A. A., Mithöfer A., Pfeffe P. E., Kraus C., Ebel J., Keister D. L.. 1999; Further studies on the role of cyclic β-glucans in symbiosis. A ndvC mutant of B. japonicum synthesizes cyclodekais-(1,3)- β-glucosyl. Plant Physiol119:1057–1064
    [Google Scholar]
  7. Bhagwat A. A., Chan L., Han R., Tan J., Kothary M., Jean-Gilles J., Tall B. D.. 2005; Characterization of enterohemorrhagic Escherichia coli strains based on acid resistance phenotypes. Infect Immun73:4993–5003
    [Google Scholar]
  8. Bochner B. R.. 2003; New technologies to assess genotype-phenotype relationships. Nat Rev Genet4:309–314
    [Google Scholar]
  9. Bochner B. R., Gadzinski P., Panomitros E.. 2001; Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res11:1246–1255
    [Google Scholar]
  10. Bohin J.-P., Lacroix J.-M.. 2007; Osmoregulation in the periplasm. In The Periplasm pp325–341 Edited by Ehrmann M.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Briones G., Inon de Iannino N., Steinberg M., Ugalde R.. 1997; Periplasmic cyclic 1,2- β-glucan in Brucella spp. is not osmoregulated. Microbiology143:1115–1124
    [Google Scholar]
  12. Briones G., Iannino I., Roset M. S., Vigliocco A., Paulo P. S., Ugalde R. A.. 2001; Brucella abortus cyclic β-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect Immun69:4528–4535
    [Google Scholar]
  13. Chen R., Bhagwat A. A., Keister D. L.. 2003; A motility revertant of the ndvB mutation in Bradyrhizobium japonicum. Curr Microbiol47:431–433
    [Google Scholar]
  14. Coburn B., Li Y., Owen D., Vallance B. A., Finlay B. B.. 2005; Salmonella enterica serovar Typhimurium pathogenicity island 2 is necessary for complete virulence in a mouse model of infectious enterocolitis. Infect Immun73:3219–3227
    [Google Scholar]
  15. Cogez V., Talaga P., Lemoine J., Bohin A.. 2001; Osmoregulated periplasmic glucans of Erwinia chrysanthemi. J Bacteriol183:3127–3133
    [Google Scholar]
  16. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F.. 1956; Colorimetric method for determination of sugars and related substances. Anal Biochem28:350–356
    [Google Scholar]
  17. Fiedler W., Rotering H.. 1988; Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides. J Biol Chem263:14684–14689
    [Google Scholar]
  18. Finney D. J.. 1971; Probit Analysis , 3rd edn. London: Cambridge University Press;
    [Google Scholar]
  19. Foster J. W.. 2004; Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol2:898–907
    [Google Scholar]
  20. Galan J. E., Cossart P.. 2005; Host–pathogen interactions: a diversity of themes, a variety of molecular machines. Curr Opin Microbiol8:1–3
    [Google Scholar]
  21. Hanoulle X., Rollet E., Clantin B., Landrieu I., Odberg-Ferragut C., Lippens G., Bohin J.-P., Villeret V.. 2004; Structural analysis of Escherichia coli OpgG, a protein required for the biosynthesis of osmoregulated periplasmic glucans. J Mol Biol342:195–205
    [Google Scholar]
  22. Hoiseth S. K., Stocker B. A.. 1981; Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature291:238–239
    [Google Scholar]
  23. Hubert J. J., Bohidar N. R., Peace K. E.. 1988; Assessment of pharmacological activity. In Biopharmaceutical Statistics for Drug Development Edited by Peace K. E.. New York: Marcel Dekker;
    [Google Scholar]
  24. Johnson K. G., Perry M. B.. 1976; Improved techniques for the preparation of bacterial lipopolysaccharides. Can J Microbiol22:29–34
    [Google Scholar]
  25. Kennedy E. P.. 1996; Membrane-derived oligosaccharides (periplasmic β-d-glucans) of Escherichia coli. In Escherichia coli and Salmonella Cellular and Molecular Biology pp1064–1074 Edited by Neidhardt F. C.. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Kennedy E. P., Rumley M. K., Schulman H., Van Golde L. M.. 1976; Identification of sn-glycerol-1-phosphate and phsophoethanolamine residues linked to the membrane-derived oligosaccharides in Escherichia coli. J Biol Chem251:4208–4213
    [Google Scholar]
  27. Kim K. S., Rao N. N., Fraley C. D., Kornberg A.. 2002; Inorganic polyphosphate is essential for long-term survival and virulence in Shigella and Salmonella spp. Proc Natl Acad Sci U S A99:7675–7680
    [Google Scholar]
  28. Lacroix J., Lanfroy E., Cogez V., Lequette Y., Bohin A., Bohin J.-P.. 1999; The mdoC gene of Escherichia coli encodes a membrane protein that is required for succinylation of osmoregulated periplasmic glucans. J Bacteriol181:3626–3631
    [Google Scholar]
  29. Lequette Y., Odberg-Ferragut C., Bohin J.-P., Lacroix J.. 2004; Identification of mdoD, an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures. J Bacteriol186:3695–3702
    [Google Scholar]
  30. Lequette Y., Rollet E., Delangle A., Greenberg E. P., Bohin J.-P.. 2007; Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa. Microbiology153:3255–3263
    [Google Scholar]
  31. LeVier K., Phillips R. W., Grippe V. K., Roop R. M. II, Walker G. C.. 2000; Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science287:2492–2493
    [Google Scholar]
  32. Lin J., Lee I. S., Frey J., Slonczewski J. L., Foster J. W.. 1995; Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol177:4097–4104
    [Google Scholar]
  33. Loubens I., Debarbieux L., Bohin A., Lacroix J., Bohin J.-P.. 1993; Homology between a genetic locus ( mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus ( hrpM) controlling the pathogenicity of Pseudomonas syringae. Mol Microbiol10:329–340
    [Google Scholar]
  34. Mah T. F., Pitts B., Pellock B., Walker G. C., Stewart P. S., O'Toole G. A.. 2003; A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature426:306–310
    [Google Scholar]
  35. Merkle R. K., Poppe I.. 1994; Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods Enzymol230:1–15
    [Google Scholar]
  36. Page F., Altabe S., Hugouvieux-Cotte-Pattat N., Lacroix J., Robert-Baidouy J., Bohin J.-P.. 2001; Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol183:3134–3141
    [Google Scholar]
  37. Parkhill J., Dougan G., James K. D., Thomson N. R., Pickard D., Wain J., Churcher C., Mungall K. L., Bentley S. D.. other authors 2001; Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature413:848–852
    [Google Scholar]
  38. Ramos-Morales F., Prieto A. I., Beuzon C. R., Holden D. W., Casadesus J.. 2003; Role for Salmonella enterica enterobacterial common antigen in bile resistance and virulence. J Bacteriol185:5328–5332
    [Google Scholar]
  39. Rathman M., Sjaastad M., Falkow S.. 1996; Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect Immun64:2765–2773
    [Google Scholar]
  40. Institute SAS. 1999; SAS/STAT User's Guide version 8. The PROBIT Procedure pp2831–2872 Cary, NC: SAS Institute;
    [Google Scholar]
  41. Sprott G. D., Koval S. F., Schnaitman C. A.. 1994; Cell fractionation.. In Methods for General and Molecular Bacteriology pp72–103 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J.. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964
    [Google Scholar]
  43. Tsai C. M., Frasch C. E.. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem119:115–119
    [Google Scholar]
  44. Weissborn A. C., Rumley M. K., Kennedy E. P.. 1992; Isolation and characterization of Escherichia coli mutants blocked in production of membrane-derived oligosaccharides. J Bacteriol174:4856–4859
    [Google Scholar]
  45. York W. S., Darvill A. G., McNeil M., Stevenson T. T., Albersheim P.. 1985; Isolation and characterization of plant cell walls and cell wall components. Methods Enzymol118:3–40
    [Google Scholar]
  46. Zhou L., Xiang-He L., Bochner B. R., Wanner B. L.. 2003; Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol185:4956–4972
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023747-0
Loading
/content/journal/micro/10.1099/mic.0.023747-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error