1887

Abstract

The ammonia monooxygenase (AMO) of is a metalloenzyme that catalyses the oxidation of ammonia to hydroxylamine. We have identified histidine 191 of AmoA as the binding site for the oxidized mechanism-based inactivator acetylene. Binding of acetylene changed the molecular mass of His-191 from 155.15 to 197.2 Da (+42.05), providing evidence that acetylene was oxidized to ketene (CHCO; 42.04 Da) which binds specifically to His-191. It must be assumed that His-191 is part of the acetylene-activating site in AMO or at least directly neighbours this site.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023721-0
2009-01-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/279.html?itemId=/content/journal/micro/10.1099/mic.0.023721-0&mimeType=html&fmt=ahah

References

  1. Anderson, K. K. & Hooper, A. B. ( 1983; ). O2 and H2O are each the source of one O in produced from NH3 by Nitrosomonas; 15N-NMR evidence. FEBS Lett 164, 236–240.[CrossRef]
    [Google Scholar]
  2. Bedard, C. & Knowles, R. ( 1989; ). Physiology, biochemistry, and specific inhibitors of CH4, , and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53, 68–84.
    [Google Scholar]
  3. Bonner, W. M. & Laskey, R. A. ( 1974; ). A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46, 83–88.[CrossRef]
    [Google Scholar]
  4. Chain, P., Lamerdin, J., Larimer, F., Regala, W., Lao, V., Land, M., Hauser, L., Hooper, A., Klotz, M. & other authors ( 2003; ). Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185, 2759–2773.[CrossRef]
    [Google Scholar]
  5. Chan, S. I. & Yu, S. S. ( 2008; ). Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: the case for a tricopper cluster. Acc Chem Res 41, 969–979.[CrossRef]
    [Google Scholar]
  6. Chan, S. I., Chen, K. H.-C., Yu, S. S.-F., Chen, C.-L. & Kuo, S. S.-J. ( 2004; ). Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry 43, 4421–4430.[CrossRef]
    [Google Scholar]
  7. Chen, P. P. & Chan, S. I. ( 2006; ). Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase. J Inorg Biochem 100, 801–809.[CrossRef]
    [Google Scholar]
  8. Chen, P. P., Yang, R. B., Lee, J. C. & Chan, S. I. ( 2007; ). Facile O-atom insertion into C–C and C–H bonds by a trinuclear copper complex designed to harness a singlet oxene. Proc Natl Acad Sci U S A 104, 14570–14575.[CrossRef]
    [Google Scholar]
  9. Covey, T. R., Bronner, R. F., Shushan, B. I. & Henion, J. ( 1988; ). The determination of proteins, oligonucleotide and peptide molecular weights by ionspray mass spectrometry. Rapid Commun Mass Spectrom 2, 249–256.[CrossRef]
    [Google Scholar]
  10. Dalton, H., Wilkins, P. C. & Jiang, Y. ( 1993; ). Mechanistic pathways in soluble methane mono-oxygenase. Biochem Soc Trans 21, 749–752.
    [Google Scholar]
  11. Dua, R. D., Bhandari, B. & Nicholas, D. J. D. ( 1979; ). Stable isotope studies on the oxidation of ammonia to hydroxylamine by Nitrosomonas europaea. FEBS Lett 106, 401–404.[CrossRef]
    [Google Scholar]
  12. Eckerskorn, C., Strupat, K., Kellermann, J., Lottspeich, F. & Hillenkamp, F. ( 1997; ). High-sensitivity peptide mapping by micro-LC with on-line membrane blotting and subsequent detection by scanning-IR-MALDI mass spectrometry. J Protein Chem 16, 349–362.[CrossRef]
    [Google Scholar]
  13. Ensign, S. A., Hyman, M. R. & Arp, D. J. ( 1993; ). In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol 175, 1971–1980.
    [Google Scholar]
  14. Fomina, L., Vazquez, B., Tkatchouk, E. & Fomine, S. ( 2002; ). The Glaser reaction mechanism. A DFT study. Tetrahedron 58, 6741–6747.[CrossRef]
    [Google Scholar]
  15. Hooper, A. B. & Terry, K. R. ( 1973; ). Specific inhibitor of ammonia oxidation in Nitrosomonas. J Bacteriol 115, 480–485.
    [Google Scholar]
  16. Hooper, A. B., Vannelli, T., Bergmann, D. J. & Arciero, D. M. ( 1997; ). Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek 71, 59–67.[CrossRef]
    [Google Scholar]
  17. Hyman, M. R. & Arp, D. J. ( 1990; ). The small-scale production of [U-14C]acetylene from Ba14CO3: application to labeling of ammonia monooxygenase in autotrophic nitrifying bacteria. Anal Biochem 190, 348–353.[CrossRef]
    [Google Scholar]
  18. Hyman, M. R. & Arp, D. J. ( 1992; ). 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. J Biol Chem 267, 1534–1545.
    [Google Scholar]
  19. Hyman, M. R. & Arp, D. J. ( 1993; ). An electrophoretic study of the thermal-dependent and reductant-dependent aggregation of the 28 kDa component of ammonia monooxygenase from Nitrosomonas europaea. Electrophoresis 14, 619–627.[CrossRef]
    [Google Scholar]
  20. Hyman, M. R. & Wood, P. M. ( 1985; ). Suicidal inactivation and labelling of ammonia monooxygenase by acetylene. Biochem J 227, 719–725.
    [Google Scholar]
  21. Hynes, R. K. & Knowles, R. ( 1978; ). Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiol Lett 4, 319–321.[CrossRef]
    [Google Scholar]
  22. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  23. Lieberman, R. L. & Rosenzweig, A. C. ( 2005a; ). Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177–182.[CrossRef]
    [Google Scholar]
  24. Lieberman, R. L. & Rosenzweig, A. C. ( 2005b; ). The quest for the particulate methane monooxygenase active site. Dalton Trans 3390–3396.
    [Google Scholar]
  25. Lieberman, R. L., Kondapalli, K. C., Shrestha, D. B., Hakemian, A. S., Smith, S. M., Telser, J., Kuzelka, J., Gupta, R., Borovik, A. S. & other authors ( 2006; ). Characterization of the particulate methane monooxygenase metal centers in multiple redox states by X-ray absorption spectroscopy. Inorg Chem 45, 8372–8378.[CrossRef]
    [Google Scholar]
  26. Lipscomb, J. D. ( 1994; ). Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48, 371–399.[CrossRef]
    [Google Scholar]
  27. Martinho, M., Choi, D. W., Dispirito, A. A., Antholine, W. E., Semrau, J. D. & Münck, E. ( 2007; ). Mössbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus Bath: evidence for a diiron center. J Am Chem Soc 129, 15783–15785.[CrossRef]
    [Google Scholar]
  28. McTavish, H., Fuchs, J. A. & Hooper, A. B. ( 1993; ). Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 175, 2436–2444.
    [Google Scholar]
  29. Nesheim, J. C. & Lipscomb, J. D. ( 1996; ). Large kinetic isotope effects in methane oxidation catalyzed by methane monooxygenase: evidence for C–H bond cleavage in a reaction cycle intermediate. Biochemistry 35, 10240–10247.[CrossRef]
    [Google Scholar]
  30. Prior, S. D. & Dalton, H. ( 1985a; ). Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath): inhibitor of methane-oxidising activity. FEMS Microbiol Lett 29, 105–109.[CrossRef]
    [Google Scholar]
  31. Prior, S. D. & Dalton, H. ( 1985b; ). The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J Gen Microbiol 131, 155–163.
    [Google Scholar]
  32. Rees, M. & Nason, A. ( 1966; ). Incorporation of atmospheric oxygen into nitrite formed during ammonia oxidation by Nitrosomonas europaea. Biochim Biophys Acta 113, 398–401.[CrossRef]
    [Google Scholar]
  33. Schägger, H. & von Jagow, G. ( 1987; ). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368–379.[CrossRef]
    [Google Scholar]
  34. Schmidt, I. & Bock, E. ( 1997; ). Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167, 106–111.[CrossRef]
    [Google Scholar]
  35. Schmidt, I., Bock, E. & Jetten, M. S. M. ( 2001; ). Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene. Microbiology 147, 2247–2253.
    [Google Scholar]
  36. Schmidt, I., Steenbakkers, P. J. M., op den Camp, H. J. M., Schmidt, K. & Jetten, M. S. M. ( 2004; ). Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J Bacteriol 186, 2781–2788.[CrossRef]
    [Google Scholar]
  37. Shears, J. H. & Wood, P. M. ( 1985; ). Spectroscopic evidence for a photosensitive oxygenated state of ammonia monoxygenase. Biochem J 226, 499–507.
    [Google Scholar]
  38. Smith, B. J. ( 1994; ). Chemical cleavage of proteins. In Basic Protein and Peptide Protocols. Methods in Molecular Biology, vol. 32, pp. 297–309. Edited by J. M. Walker. Totowa, NJ: Humana Press.
  39. Stirling, D. I. & Dalton, H. ( 1977; ). Effect of metal-binding agents and other compounds on methane oxidation by two strains of Methylococcus capsulatus. Arch Microbiol 114, 71–76.[CrossRef]
    [Google Scholar]
  40. Yeager, C. M., Bottomley, P. J., Arp, D. J. & Hyman, M. R. ( 1999; ). Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes. Appl Environ Microbiol 65, 632–639.
    [Google Scholar]
  41. Zahn, J. A. & DiSpirito, A. A. ( 1996; ). Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178, 1018–1029.
    [Google Scholar]
  42. Zahn, J. A., Arciero, D. M., Hooper, A. B. & DiSpirito, A. A. ( 1996; ). Evidence for an iron center in the ammonia monooxygenase from Nitrosomonas europaea. FEBS Lett 397, 35–38.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023721-0
Loading
/content/journal/micro/10.1099/mic.0.023721-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error