1887

Abstract

transiently accumulates large amounts of glycogen, when cultivated on glucose and other sugars as a source of carbon and energy. Apart from the debranching enzyme GlgX, which is required for the formation of maltodextrins from glycogen, -glucan phosphorylases were assumed to be involved in glycogen degradation, forming -glucose 1-phosphate from glycogen and from maltodextrins. We show here that in fact possesses two -glucan phosphorylases, which act as a glycogen phosphorylase (GlgP) and as a maltodextrin phosphorylase (MalP). By chromosomal inactivation and subsequent analysis of the mutant, was identified as the gene. The deletion mutant Δ completely lacked MalP activity and showed reduced intracellular glycogen degradation, confirming the proposed pathway for glycogen degradation in via GlgP, GlgX and MalP. Surprisingly, the Δ mutant showed impaired growth, reduced viability and altered cell morphology on maltose and accumulated much higher concentrations of glycogen and maltodextrins than the wild-type during growth on this substrate, suggesting an additional role of MalP in maltose metabolism of . Further assessment of enzyme activities revealed the presence of 4--glucanotransferase (MalQ), glucokinase (Glk) and -phosphoglucomutase (-Pgm), and the absence of maltose hydrolase, maltose phosphorylase and -Pgm, all three known to be involved in maltose utilization by Gram-positive bacteria. Based on these findings, we conclude that metabolizes maltose via a pathway involving maltodextrin and glucose formation by MalQ, glucose phosphorylation by Glk and maltodextrin degradation via the reactions of MalP and -Pgm, a pathway hitherto known to be present in Gram-negative rather than in Gram-positive bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023614-0
2009-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/347.html?itemId=/content/journal/micro/10.1099/mic.0.023614-0&mimeType=html&fmt=ahah

References

  1. Adhya, S. & Schwartz, M. ( 1971; ). Phosphoglucomutase mutants of Escherichia coli K-12. J Bacteriol 108, 621–626.
    [Google Scholar]
  2. Alonso-Casajus, N., Dauvillee, D., Viale, A. M., Munoz, F. J., Baroja-Fernandez, E., Moran-Zorzano, M. T., Eydallin, G., Ball, S. & Pozueto-Romero, J. ( 2006; ). Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J Bacteriol 188, 5266–5272.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Andersson, U. & Radström, P. ( 2002; ). β-Glucose 1-phosphate-interconverting enzymes in maltose- and trehalose-fermenting lactic acid bacteria. Environ Microbiol 4, 81–88.[CrossRef]
    [Google Scholar]
  5. Bibel, M., Brettl, C., Gosslar, U., Kriegshäuser, G. & Liebl, W. ( 1998; ). Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritima. FEMS Microbiol Lett 158, 9–15.[CrossRef]
    [Google Scholar]
  6. Blombach, B., Schreiner, M. E., Moch, M., Oldiges, M. & Eikmanns, B. J. ( 2007; ). Effect of pyruvate dehydrogenase complex deficiency on l-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76, 615–623.[CrossRef]
    [Google Scholar]
  7. Boos, W. & Shuman, H. ( 1998; ). Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62, 204–229.
    [Google Scholar]
  8. Chen, J., Lu, G., Lin, J., Davidson, A. L. & Quiocho, F. A. ( 2003; ). A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 12, 651–661.[CrossRef]
    [Google Scholar]
  9. Cho, H. Y., Kim, Y. W., Kim, T. J., Lee, H. S., Kim, D. Y., Kim, J. W., Lee, Y. W., Leed, S. & Park, K. H. ( 2000; ). Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4–2. Biochim Biophys Acta 1478, 333–340.[CrossRef]
    [Google Scholar]
  10. Daus, M. L., Landmesser, H., Schlosser, A., Müller, P., Hermann, A. & Schneider, E. ( 2006; ). ATP induces conformational changes of periplasmatic loop regions of the maltose ATP-binding cassette transporter. J Biol Chem 281, 3856–3865.[CrossRef]
    [Google Scholar]
  11. Dauvillee, D., Kinderf, I. S., Zhongyi, L., Kosar-Hashemi, B., Samuel, M. S., Rampling, L., Ball, S. & Morell, M. K. ( 2005; ). Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol 187, 1465–1473.[CrossRef]
    [Google Scholar]
  12. De Smet, K. A. L., Weston, A., Brown, I. N., Young, D. B. & Robertson, B. D. ( 2000; ). Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146, 199–208.
    [Google Scholar]
  13. Dippel, R., Bergmiller, T., Böhm, A. & Boos, W. ( 2005; ). The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation. J Bacteriol 187, 8332–8339.[CrossRef]
    [Google Scholar]
  14. Dominguez, H., Rollin, C., Guyonvarch, A., Guerquin-Kern, J.-L., Cocaign-Bousquet, M. & Lindley, N. D. ( 1998; ). Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254, 96–102.[CrossRef]
    [Google Scholar]
  15. Dower, W. J., Miller, J. F. & Ragsdale, C. W. ( 1988; ). High efficiency transformation of Escherichia coli by high voltage electroporation. Nucleic Acids Res 16, 6127–6145.[CrossRef]
    [Google Scholar]
  16. Eggeling, L. & Bott, M. ( 2005; ). Handbook of Corynebacterium glutamicum. Boca Raton, FL: CRC Press.
  17. Ehrmann, M. A. & Vogel, R. F. ( 1998; ). Maltose metabolism of Lactobacillus sanfrancensis: cloning and heterologous expression of the key enzymes, maltose phosphorylase and phosphoglucomutase. FEMS Microbiol Lett 169, 81–86.[CrossRef]
    [Google Scholar]
  18. Eikmanns, B. J., Kleinertz, E., Liebl, W. & Sahm, H. ( 1991a; ). A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102, 93–98.[CrossRef]
    [Google Scholar]
  19. Eikmanns, B. J., Metzger, M., Reinscheid, D., Kircher, M. & Sahm, H. ( 1991b; ). Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34, 617–622.[CrossRef]
    [Google Scholar]
  20. Eikmanns, B. J., Thum-Schmitz, N., Eggeling, L., Ludtke, K. U. & Sahm, H. ( 1994; ). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140, 1817–1828.[CrossRef]
    [Google Scholar]
  21. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  22. Huson, D. H., Richter, D. C., Rausch, C., Dezulian, T., Franz, M. & Rupp, R. ( 2007; ). Dendroscope – an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8, 460 [CrossRef]
    [Google Scholar]
  23. Ikeda, M. & Nakagawa, S. ( 2003; ). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62, 99–109.[CrossRef]
    [Google Scholar]
  24. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, M., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J. & other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  25. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M. & Hirakawa, M. ( 2006; ). From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34, D354–D357.[CrossRef]
    [Google Scholar]
  26. Le Breton, Y., Pichereau, V., Sauvageot, N., Auffray, Y. & Rince, A. ( 2005; ). Maltose utilization in Enterococcus faecalis. J Appl Microbiol 98, 806–813.[CrossRef]
    [Google Scholar]
  27. Levander, F., Andersson, U. & Radström, P. ( 2001; ). Physiological role of β-phophoglucomutase in Lactococcus lactis. Appl Environ Microbiol 67, 4546–4553.[CrossRef]
    [Google Scholar]
  28. Liebl, W. ( 2005; ). Corynebacterium taxonomy. In Handbook of Corynebacterium glutamicum, pp. 9–34. Edited by L. Eggeling & M. Bott. Boca Raton, FL: CRC Press.
  29. Lu, M. & Kleckner, N. ( 1994; ). Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli. J Bacteriol 176, 5847–5851.
    [Google Scholar]
  30. Martin, S. A. & Russell, J. B. ( 1987; ). Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis. Appl Environ Microbiol 53, 2388–2393.
    [Google Scholar]
  31. Mesak, L. R. & Dahl, M. K. ( 2000; ). Purification and enzymatic characterization of PgcM, a β-phosphoglucomutase and glucose-1-phosphate dismutase of Bacillus subtilis. Arch Microbiol 174, 256–264.[CrossRef]
    [Google Scholar]
  32. Meyer, D., Schneider-Fresenius, C., Horlacher, R., Peist, R. & Boos, W. ( 1997; ). Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 179, 1298–1306.
    [Google Scholar]
  33. Monod, J. & Torriani, A. M. ( 1950; ). De l'amylomaltase d'Escherichia coli. Ann Inst Pasteur (Paris) 78, 65–77.
    [Google Scholar]
  34. Nilsson, U. & Radström, P. ( 2001; ). Genetic localization and regulation of the maltose phosphorylase gene, malP, in Lactococcus lactis. Microbiology 147, 1565–1573.
    [Google Scholar]
  35. Park, S.-Y., Kim, H.-K., Yoo, S.-K., Oh, T.-K. & Lee, J. K. ( 2000; ). Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum. FEMS Microbiol Lett 188, 209–215.[CrossRef]
    [Google Scholar]
  36. Pugsley, A. P. & Dubreuil, C. ( 1988; ). Molecular characterization of malQ, the structural gene for the Escherichia coli enzyme amylomaltase. Mol Microbiol 2, 473–479.[CrossRef]
    [Google Scholar]
  37. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  39. Schönert, S., Seitz, S., Krafft, H., Feuerbaum, E.-A., Andernach, I., Witz, G. & Dahl, M. K. ( 2006; ). Maltose and maltodextrin utilization by Bacillus subtilis. J Bacteriol 188, 3911–3922.[CrossRef]
    [Google Scholar]
  40. Schwartz, M. ( 1967; ). Phenotypic expression and genetic localization of mutations affecting maltose metabolism in Escherichia coli K12. Ann Inst Pasteur (Paris) 112, 673–698. in French
    [Google Scholar]
  41. Seibold, G. M. & Eikmanns, B. J. ( 2007; ). The glgX gene product of Corynebacterium glutamicum is required for glycogen degradation and for fast adaptation to hyperosmotic stress. Microbiology 153, 2212–2220.[CrossRef]
    [Google Scholar]
  42. Seibold, G. M., Auchter, M., Berens, S., Kalinowski, J. & Eikmanns, B. J. ( 2006; ). Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124, 381–391.[CrossRef]
    [Google Scholar]
  43. Seibold, G. M., Dempf, S., Schreiner, J. & Eikmanns, B. J. ( 2007; ). Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology 153, 1275–1285.[CrossRef]
    [Google Scholar]
  44. Skarlatos, P. & Dahl, M. K. ( 1998; ). The glucose kinase of Bacillus subtilis. J Bacteriol 180, 3222–3226.
    [Google Scholar]
  45. Takaha, T., Yanase, M., Takata, H. & Okada, S. ( 2001; ). Structure and properties of Thermus aquaticus α-glucan phosphorylase expressed in Escherichia coli. J Appl Glycosci 48, 71–78.[CrossRef]
    [Google Scholar]
  46. Tauch, A., Homann, I., Mormann, S., Rüberg, S., Billault, A., Bathe, B., Brand, S., Brockmann-Gretza, O., Rückert, C. & other authors ( 2002; ). Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J Biotechnol 95, 25–38.[CrossRef]
    [Google Scholar]
  47. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  48. Thompson, J., Pikis, A., Ruvinov, S. B., Henrissat, B., Yamamoto, H. & Sekiguchi, J. ( 1998; ). The gene glvA of Bacillus subtilis 168 encodes a metal-requiring, NAD(H)-dependent 6-phospho-α-glucosidase. J Biol Chem 273, 27347–27356.[CrossRef]
    [Google Scholar]
  49. Tropis, M., Meniche, X., Wolf, A., Gebhard, H., Strelkow, S., Chami, M., Schomburg, D., Krämer, R., Morbach, S. & Daffé, M. ( 2005; ). The crucial role of trehalose and structurally related oligosaccharides in the biosynthesis and transfer of mycolic acids in Corynebacterianeae. J Biol Chem 280, 26573–26585.[CrossRef]
    [Google Scholar]
  50. Tzvetkov, M., Klopprogge, C., Zelder, O. & Liebl, W. ( 2003; ). Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall composition. Microbiology 149, 1659–1673.[CrossRef]
    [Google Scholar]
  51. Watson, K. A., McCleverty, C., Geremia, S., Cottaz, S., Driguez, H. & Johnson, L. N. ( 1999; ). Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. EMBO J 18, 4619–4632.[CrossRef]
    [Google Scholar]
  52. Weinhäusel, A., Griessler, R., Krebs, A., Zipper, P., Haltrich, D., Kube, K. D. & Nidetzky, B. ( 1997; ). α-1,4-d-Glucan phosphorylase of Gram-positive Corynebacterium callunae: isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering. Biochem J 326, 773–783.
    [Google Scholar]
  53. Wolf, A., Krämer, R. & Morbach, S. ( 2003; ). Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC 13032 and their significance in response to osmotic stress. Mol Microbiol 49, 1119–1134.[CrossRef]
    [Google Scholar]
  54. Woodruff, P. J., Carlson, B. L., Siridechadilok, B., Pratt, M. R., Senaratne, R. H., Mougous, J. D., Riley, L. W., Williams, S. J. & Bertozzi, C. R. ( 2004; ). Trehalose is required for growth of Mycobacterium smegmatis. J Biol Chem 279, 28835–28843.[CrossRef]
    [Google Scholar]
  55. Xavier, K. B., Peist, R., Kossmann, M., Boos, W. & Santos, H. ( 1999; ). Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes. J Bacteriol 181, 3358–3367.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023614-0
Loading
/content/journal/micro/10.1099/mic.0.023614-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error