1887

Abstract

transiently accumulates large amounts of glycogen, when cultivated on glucose and other sugars as a source of carbon and energy. Apart from the debranching enzyme GlgX, which is required for the formation of maltodextrins from glycogen, -glucan phosphorylases were assumed to be involved in glycogen degradation, forming -glucose 1-phosphate from glycogen and from maltodextrins. We show here that in fact possesses two -glucan phosphorylases, which act as a glycogen phosphorylase (GlgP) and as a maltodextrin phosphorylase (MalP). By chromosomal inactivation and subsequent analysis of the mutant, was identified as the gene. The deletion mutant Δ completely lacked MalP activity and showed reduced intracellular glycogen degradation, confirming the proposed pathway for glycogen degradation in via GlgP, GlgX and MalP. Surprisingly, the Δ mutant showed impaired growth, reduced viability and altered cell morphology on maltose and accumulated much higher concentrations of glycogen and maltodextrins than the wild-type during growth on this substrate, suggesting an additional role of MalP in maltose metabolism of . Further assessment of enzyme activities revealed the presence of 4--glucanotransferase (MalQ), glucokinase (Glk) and -phosphoglucomutase (-Pgm), and the absence of maltose hydrolase, maltose phosphorylase and -Pgm, all three known to be involved in maltose utilization by Gram-positive bacteria. Based on these findings, we conclude that metabolizes maltose via a pathway involving maltodextrin and glucose formation by MalQ, glucose phosphorylation by Glk and maltodextrin degradation via the reactions of MalP and -Pgm, a pathway hitherto known to be present in Gram-negative rather than in Gram-positive bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023614-0
2009-02-01
2020-07-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/347.html?itemId=/content/journal/micro/10.1099/mic.0.023614-0&mimeType=html&fmt=ahah

References

  1. Adhya S., Schwartz M.. 1971; Phosphoglucomutase mutants of Escherichia coli K-12. J Bacteriol108:621–626
    [Google Scholar]
  2. Alonso-Casajus N., Dauvillee D., Viale A. M., Munoz F. J., Baroja-Fernandez E., Moran-Zorzano M. T., Eydallin G., Ball S., Pozueto-Romero J.. 2006; Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli . J Bacteriol188:5266–5272
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  4. Andersson U., Radström P.. 2002; β -Glucose 1-phosphate-interconverting enzymes in maltose- and trehalose-fermenting lactic acid bacteria. Environ Microbiol4:81–88
    [Google Scholar]
  5. Bibel M., Brettl C., Gosslar U., Kriegshäuser G., Liebl W.. 1998; Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritima . FEMS Microbiol Lett158:9–15
    [Google Scholar]
  6. Blombach B., Schreiner M. E., Moch M., Oldiges M., Eikmanns B. J.. 2007; Effect of pyruvate dehydrogenase complex deficiency on l-lysine production with Corynebacterium glutamicum . Appl Microbiol Biotechnol76:615–623
    [Google Scholar]
  7. Boos W., Shuman H.. 1998; Maltose/maltodextrin system of Escherichia coli : transport, metabolism, and regulation. Microbiol Mol Biol Rev62:204–229
    [Google Scholar]
  8. Chen J., Lu G., Lin J., Davidson A. L., Quiocho F. A.. 2003; A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell12:651–661
    [Google Scholar]
  9. Cho H. Y., Kim Y. W., Kim T. J., Lee H. S., Kim D. Y., Kim J. W., Lee Y. W., Leed S., Park K. H.. 2000; Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4–2. Biochim Biophys Acta1478:333–340
    [Google Scholar]
  10. Daus M. L., Landmesser H., Schlosser A., Müller P., Hermann A., Schneider E.. 2006; ATP induces conformational changes of periplasmatic loop regions of the maltose ATP-binding cassette transporter. J Biol Chem281:3856–3865
    [Google Scholar]
  11. Dauvillee D., Kinderf I. S., Zhongyi L., Kosar-Hashemi B., Samuel M. S., Rampling L., Ball S., Morell M. K.. 2005; Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol187:1465–1473
    [Google Scholar]
  12. De Smet K. A. L., Weston A., Brown I. N., Young D. B., Robertson B. D.. 2000; Three pathways for trehalose biosynthesis in mycobacteria. Microbiology146:199–208
    [Google Scholar]
  13. Dippel R., Bergmiller T., Böhm A., Boos W.. 2005; The maltodextrin system of Escherichia coli : glycogen-derived endogenous induction and osmoregulation. J Bacteriol187:8332–8339
    [Google Scholar]
  14. Dominguez H., Rollin C., Guyonvarch A., Guerquin-Kern J.-L., Cocaign-Bousquet M., Lindley N. D.. 1998; Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem254:96–102
    [Google Scholar]
  15. Dower W. J., Miller J. F., Ragsdale C. W.. 1988; High efficiency transformation of Escherichia coli by high voltage electroporation. Nucleic Acids Res16:6127–6145
    [Google Scholar]
  16. Eggeling L., Bott M.. 2005; Handbook of Corynebacterium glutamicum Boca Raton, FL: CRC Press;
  17. Ehrmann M. A., Vogel R. F.. 1998; Maltose metabolism of Lactobacillus sanfrancensis : cloning and heterologous expression of the key enzymes, maltose phosphorylase and phosphoglucomutase. FEMS Microbiol Lett169:81–86
    [Google Scholar]
  18. Eikmanns B. J., Kleinertz E., Liebl W., Sahm H.. 1991a; A family of Corynebacterium glutamicum / Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene102:93–98
    [Google Scholar]
  19. Eikmanns B. J., Metzger M., Reinscheid D., Kircher M., Sahm H.. 1991b; Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol34:617–622
    [Google Scholar]
  20. Eikmanns B. J., Thum-Schmitz N., Eggeling L., Ludtke K. U., Sahm H.. 1994; Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology140:1817–1828
    [Google Scholar]
  21. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  22. Huson D. H., Richter D. C., Rausch C., Dezulian T., Franz M., Rupp R.. 2007; Dendroscope – an interactive viewer for large phylogenetic trees. BMC Bioinformatics8:460
    [Google Scholar]
  23. Ikeda M., Nakagawa S.. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol62:99–109
    [Google Scholar]
  24. Kalinowski J., Bathe B., Bartels D., Bischoff M., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J.. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol104:5–25
    [Google Scholar]
  25. Kanehisa M., Goto S., Hattori M., Aoki-Kinoshita K. F., Itoh M., Kawashima S., Katayama T., Araki M., Hirakawa M.. 2006; From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res34:D354–D357
    [Google Scholar]
  26. Le Breton Y., Pichereau V., Sauvageot N., Auffray Y., Rince A.. 2005; Maltose utilization in Enterococcus faecalis . J Appl Microbiol98:806–813
    [Google Scholar]
  27. Levander F., Andersson U., Radström P.. 2001; Physiological role of β -phophoglucomutase in Lactococcus lactis . Appl Environ Microbiol67:4546–4553
    [Google Scholar]
  28. Liebl W.. 2005; Corynebacterium taxonomy. In Handbook of Corynebacterium glutamicum pp9–34 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC Press;
  29. Lu M., Kleckner N.. 1994; Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli . J Bacteriol176:5847–5851
    [Google Scholar]
  30. Martin S. A., Russell J. B.. 1987; Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis . Appl Environ Microbiol53:2388–2393
    [Google Scholar]
  31. Mesak L. R., Dahl M. K.. 2000; Purification and enzymatic characterization of PgcM, a β -phosphoglucomutase and glucose-1-phosphate dismutase of Bacillus subtilis . Arch Microbiol174:256–264
    [Google Scholar]
  32. Meyer D., Schneider-Fresenius C., Horlacher R., Peist R., Boos W.. 1997; Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol179:1298–1306
    [Google Scholar]
  33. Monod J., Torriani A. M.. 1950; De l'amylomaltase d' Escherichia coli . Ann Inst Pasteur ( Paris ) 78:65–77
    [Google Scholar]
  34. Nilsson U., Radström P.. 2001; Genetic localization and regulation of the maltose phosphorylase gene, malP , in Lactococcus lactis . Microbiology147:1565–1573
    [Google Scholar]
  35. Park S.-Y., Kim H.-K., Yoo S.-K., Oh T.-K., Lee J. K.. 2000; Characterization of glk , a gene coding for glucose kinase of Corynebacterium glutamicum . FEMS Microbiol Lett188:209–215
    [Google Scholar]
  36. Pugsley A. P., Dubreuil C.. 1988; Molecular characterization of malQ , the structural gene for the Escherichia coli enzyme amylomaltase. Mol Microbiol2:473–479
    [Google Scholar]
  37. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene145:69–73
    [Google Scholar]
  39. Schönert S., Seitz S., Krafft H., Feuerbaum E.-A., Andernach I., Witz G., Dahl M. K.. 2006; Maltose and maltodextrin utilization by Bacillus subtilis . J Bacteriol188:3911–3922
    [Google Scholar]
  40. Schwartz M.. 1967; Phenotypic expression and genetic localization of mutations affecting maltose metabolism in Escherichia coli K12. Ann Inst Pasteur (Paris)112:673–698 in French
    [Google Scholar]
  41. Seibold G. M., Eikmanns B. J.. 2007; The glgX gene product of Corynebacterium glutamicum is required for glycogen degradation and for fast adaptation to hyperosmotic stress. Microbiology153:2212–2220
    [Google Scholar]
  42. Seibold G. M., Auchter M., Berens S., Kalinowski J., Eikmanns B. J.. 2006; Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol124:381–391
    [Google Scholar]
  43. Seibold G. M., Dempf S., Schreiner J., Eikmanns B. J.. 2007; Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology153:1275–1285
    [Google Scholar]
  44. Skarlatos P., Dahl M. K.. 1998; The glucose kinase of Bacillus subtilis . J Bacteriol180:3222–3226
    [Google Scholar]
  45. Takaha T., Yanase M., Takata H., Okada S.. 2001; Structure and properties of Thermus aquaticus α -glucan phosphorylase expressed in Escherichia coli . J Appl Glycosci48:71–78
    [Google Scholar]
  46. Tauch A., Homann I., Mormann S., Rüberg S., Billault A., Bathe B., Brand S., Brockmann-Gretza O., Rückert C.. other authors 2002; Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J Biotechnol95:25–38
    [Google Scholar]
  47. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  48. Thompson J., Pikis A., Ruvinov S. B., Henrissat B., Yamamoto H., Sekiguchi J.. 1998; The gene glvA of Bacillus subtilis 168 encodes a metal-requiring, NAD(H)-dependent 6-phospho- α -glucosidase. J Biol Chem273:27347–27356
    [Google Scholar]
  49. Tropis M., Meniche X., Wolf A., Gebhard H., Strelkow S., Chami M., Schomburg D., Krämer R., Morbach S., Daffé M.. 2005; The crucial role of trehalose and structurally related oligosaccharides in the biosynthesis and transfer of mycolic acids in Corynebacterianeae. J Biol Chem280:26573–26585
    [Google Scholar]
  50. Tzvetkov M., Klopprogge C., Zelder O., Liebl W.. 2003; Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum : inactivation of trehalose production leads to impaired growth and an altered cell wall composition. Microbiology149:1659–1673
    [Google Scholar]
  51. Watson K. A., McCleverty C., Geremia S., Cottaz S., Driguez H., Johnson L. N.. 1999; Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. EMBO J18:4619–4632
    [Google Scholar]
  52. Weinhäusel A., Griessler R., Krebs A., Zipper P., Haltrich D., Kube K. D., Nidetzky B.. 1997; α -1,4-d-Glucan phosphorylase of Gram-positive Corynebacterium callunae : isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering. Biochem J326:773–783
    [Google Scholar]
  53. Wolf A., Krämer R., Morbach S.. 2003; Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC 13032 and their significance in response to osmotic stress. Mol Microbiol49:1119–1134
    [Google Scholar]
  54. Woodruff P. J., Carlson B. L., Siridechadilok B., Pratt M. R., Senaratne R. H., Mougous J. D., Riley L. W., Williams S. J., Bertozzi C. R.. 2004; Trehalose is required for growth of Mycobacterium smegmatis . J Biol Chem279:28835–28843
    [Google Scholar]
  55. Xavier K. B., Peist R., Kossmann M., Boos W., Santos H.. 1999; Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis : purification and characterization of key enzymes. J Bacteriol181:3358–3367
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023614-0
Loading
/content/journal/micro/10.1099/mic.0.023614-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error