Citrate-mediated iron uptake in : involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter Free

Abstract

In an attempt to identify components of a ferric citrate uptake system in , a mutant library of a siderophore-deficient strain (IA614) was constructed and screened for defects in citrate-promoted growth in an Fe-restricted medium. A mutant disrupted in gene PA3901, encoding a homologue of the outer-membrane ferric citrate receptor, FecA, of (FecA), was recovered and shown to be deficient in citrate-promoted growth and citrate-mediated Fe uptake. A mutant disrupted in gene PA4825, encoding a homologue of the MgtA/MgtB Mg transporters in , was similarly deficient in citrate-promoted growth, though this was due to a citrate sensitivity of the mutant apparently resulting from citrate-promoted acquisition of Fe and resultant oxidative stress. Consistent with citrate delivering Fe to cells as Fe, a mutant lacking the FeoB Fe transporter homologue, PA4358, was compromised for citrate-promoted growth in Fe-restricted medium and showed markedly reduced citrate-mediated Fe uptake. Subsequent elimination of two Fe transporter homologues, PA5216 and PA4687, in the mutant failed to further compromise citrate-promoted growth or Fe uptake, though the additional loss of , encoding a periplasmic ferroxidase implicated in Fe acquisition, completely abrogated citrate-mediated Fe uptake. Fe acquisition mediated by other siderophores (e.g. pyoverdine) was, however, unaffected in the quadruple knockout strain. These data indicate that Fe delivered to by citrate is released as Fe, probably in the periplasm, prior to its transport into cells via Fe transport components.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023531-0
2009-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/305.html?itemId=/content/journal/micro/10.1099/mic.0.023531-0&mimeType=html&fmt=ahah

References

  1. Adhikari P., Berish S. A., Nowalk A. J., Veraldi K. L., Morse S. A., Mietzner T. A. 1996; The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron. J Bacteriol 178:2145–2149
    [Google Scholar]
  2. Angerer A., Klupp B., Braun V. 1992; Iron transport systems of Serratia marcescens . J Bacteriol 174:1378–1387
    [Google Scholar]
  3. Ankenbauer R. G., Cox C. D. 1988; Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis. J Bacteriol 170:5364–5367
    [Google Scholar]
  4. Ankenbauer R. G., Toyokuni T., Staley A., Rinehart K. L. Jr, Cox C. D. 1988; Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa . J Bacteriol 170:5344–5351
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1992 Short Protocols in Molecular Biology , 2nd edn. New York: Wiley;
    [Google Scholar]
  6. Banin E., Vasil M. L., Greenberg E. P. 2005; Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102:11076–11081
    [Google Scholar]
  7. Barcak G. J., Chandler M. S., Redfield R. J., Tomb J. F. 1991; Genetic systems in Haemophilus influenzae . Methods Enzymol 204:321–342
    [Google Scholar]
  8. Braun V. 2003; Iron uptake by Escherichia coli . Front Biosci 8:s1409–s1421
    [Google Scholar]
  9. Braun V., Mahren S. 2005; Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol Rev 29:673–684
    [Google Scholar]
  10. Braun V., Mahren S., Sauter A. 2006; Gene regulation by transmembrane signaling. Biometals 19:103–113
    [Google Scholar]
  11. Cao L., Srikumar R., Poole K. 2004; MexAB-OprM hyperexpression in NalC type multidrug resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720–PA3719. Mol Microbiol 53:1423–1436
    [Google Scholar]
  12. Chamnongpol S., Groisman E. A. 2002; Mg2+ homeostasis and avoidance of metal toxicity. Mol Microbiol 44:561–571
    [Google Scholar]
  13. Choi K. H., Kumar A., Schweizer H. P. 2005; A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397
    [Google Scholar]
  14. Cornelis P., Moguilevsky N., Jacques J. F., Masson P. L. 1987; Study of the siderophores and receptors in different clinical isolates of Pseudomonas aeruginosa . Antibiot Chemother 39:290–306
    [Google Scholar]
  15. Cox C. D. 1980a; Iron reductases from Pseudomonas aeruginosa . J Bacteriol 141:199–204
    [Google Scholar]
  16. Cox C. D. 1980b; Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa . J Bacteriol 142:581–587
    [Google Scholar]
  17. Cuiv P. O., Clarke P., O'Connell M. 2006; Identification and characterization of an iron-regulated gene, chtA, required for the utilization of the xenosiderophores aerobactin, rhizobactin 1021 and schizokinen by Pseudomonas aeruginosa . Microbiology 152:945–954
    [Google Scholar]
  18. Cuiv P. O., Keogh D., Clarke P., O'Connell M. 2007; FoxB of Pseudomonas aeruginosa functions in the utilization of the xenosiderophores ferrichrome, ferrioxamine B, and schizokinen: evidence for transport redundancy at the inner membrane. J Bacteriol 189:284–287
    [Google Scholar]
  19. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  20. Faguy D. M., Bayley D. P., Kostyukova A. S., Thomas N. A., Jarrell K. F. 1996; Isolation and characterization of flagella and flagellin proteins from the thermoacidophilic archaea Thermoplasma volcanium and Sulfolobus shibatae . J Bacteriol 178:902–905
    [Google Scholar]
  21. Ghysels B., Ochsner U., Mollman U., Heinisch L., Vasil M., Cornelis P., Matthijs S. 2005; The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol Lett 246:167–174
    [Google Scholar]
  22. Greenwald J., Hoegy F., Nader M., Journet L., Mislin G. L., Graumann P. L., Schalk I. J. 2007; Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa. A role for ferrous iron. J Biol Chem 282:2987–2995
    [Google Scholar]
  23. Hantke K. 1987; Ferrous iron transport mutants in Escherichia coli K-12. FEMS Microbiol Lett 44:53–58
    [Google Scholar]
  24. Harding R. A., Royt P. W. 1990; Acquisition of iron from citrate by Pseudomonas aeruginosa . J Gen Microbiol 136:1859–1867
    [Google Scholar]
  25. Heinrichs D. E., Young L., Poole K. 1991; Pyochelin-mediated iron transport in Pseudomonas aeruginosa: involvement of a high-molecular-mass outer membrane protein. Infect Immun 59:3680–3684
    [Google Scholar]
  26. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    [Google Scholar]
  27. Huston W. M., Jennings M. P., McEwan A. G. 2002; The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition. Mol Microbiol 45:1741–1750
    [Google Scholar]
  28. Inoue H., Nojima H., Okayama H. 1990; High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28
    [Google Scholar]
  29. Kammler M., Schon C., Hantke K. 1993; Characterization of the ferrous iron uptake system of Escherichia coli . J Bacteriol 175:6212–6219
    [Google Scholar]
  30. Katoh H., Hagino N., Grossman A. R., Ogawa T. 2001; Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183:2779–2784
    [Google Scholar]
  31. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197
    [Google Scholar]
  32. Llamas M. A., Sparrius M., Kloet R., Jimenez C. R., Vandenbroucke-Grauls C., Bitter W. 2006; The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa . J Bacteriol 188:1882–1891
    [Google Scholar]
  33. Llamas M. A., Mooij M. J., Sparrius M., Vandenbroucke-Grauls C. M., Ratledge C., Bitter W. 2008; Characterization of five novel Pseudomonas aeruginosa cell-surface signalling systems. Mol Microbiol 67:458–472
    [Google Scholar]
  34. Louvel H., Saint G. I., Picardeau M. 2005; Isolation and characterization of FecA- and FeoB-mediated iron acquisition systems of the spirochete Leptospira biflexa by random insertional mutagenesis. J Bacteriol 187:3249–3254
    [Google Scholar]
  35. Mazoy R., Lopez E. M., Fouz B., Amaro C., Lemos M. L. 1999; Ferric-reductase activities in Vibrio vulnificus biotypes 1 and 2. FEMS Microbiol Lett 172:205–211
    [Google Scholar]
  36. Meyer J. M. 1992; Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: possible involvement of porin OprF in iron translocation. J Gen Microbiol 138:951–958
    [Google Scholar]
  37. Meyer J.-M., Abdallah M. A. 1978; The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physiochemical properties. J Gen Microbiol 107:319–328
    [Google Scholar]
  38. Meyer J.-M., Hornsperger J. M. 1978; Role of pyoverdinePf, the iron-binding fluorescent pigment of Pseudomonas fluorescens, in iron transport. J Gen Microbiol 107:329–331
    [Google Scholar]
  39. Meyer J. M., Stintzi A., Coulanges V., Shivaji S., Voss J. A., Taraz K., Budzikiewicz H. 1998; Siderotyping of fluorescent pseudomonads: characterization of pyoverdines of Pseudomonas fluorescens and Pseudomonas putida strains from Antarctica. Microbiology 144:3119–3126
    [Google Scholar]
  40. Meyer J. M., Stintzi A., Poole K. 1999; The ferripyoverdine receptor FpvA of Pseudomonas aeruginosa PAO1 recognizes the ferripyoverdines of Pseudomonas aeruginosa PAO1 and Pseudomonas fluorescens ATCC 13525. FEMS Microbiol Lett 170:145–150
    [Google Scholar]
  41. Michel L., Bachelard A., Reimmann C. 2007; Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa . Microbiology 153:1508–1518
    [Google Scholar]
  42. Mielczarek E. V., Royt P. W., Toth-Allen J. 1990; A Mossbauer spectroscopy study of cellular acquisition of iron from pyoverdine by Pseudomonas aeruginosa . Biol Met 3:34–38
    [Google Scholar]
  43. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  44. Naikare H., Palyada K., Panciera R., Marlow D., Stintzi A. 2006; Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect Immun 74:5433–5444
    [Google Scholar]
  45. Nehme D., Li X. Z., Elliot R., Poole K. 2004; Assembly of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB. J Bacteriol 186:2973–2983
    [Google Scholar]
  46. Ochsner U. A., Wilderman P. J., Vasil A. I., Vasil M. L. 2002; GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287
    [Google Scholar]
  47. Poch M. T., Johnson W. 1993; Ferric reductases of Legionella pneumophila . Biometals 6:107–114
    [Google Scholar]
  48. Poole K., McKay G. A. 2003; Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci 8:d661–d686
    [Google Scholar]
  49. Poole K., Young L., Neshat S. 1990; Enterobactin-mediated iron transport in Pseudomonas aeruginosa . J Bacteriol 172:6991–6996
    [Google Scholar]
  50. Poole K., Neshat S., Heinrichs D. 1991; Pyoverdine-mediated iron transport in Pseudomonas aeruginosa: involvement of a high-molecular-mass outer membrane protein. FEMS Microbiol Lett 62:1–5
    [Google Scholar]
  51. Ravel J., Cornelis P. 2003; Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200
    [Google Scholar]
  52. Redly G. A., Poole K. 2003; Pyoverdine-mediated regulation of FpvA synthesis in Pseudomonas aeruginosa: involvement of a probable extracytoplasmic-function sigma factor, FpvI. J Bacteriol 185:1261–1265
    [Google Scholar]
  53. Robey M., Cianciotto N. P. 2002; Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 70:5659–5669
    [Google Scholar]
  54. Royt P. W. 1990; Pyoverdine-mediated iron transport. Fate of iron and ligand in Pseudomonas aeruginosa . Biol Met 3:28–33
    [Google Scholar]
  55. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  56. Sanders J. D., Cope L. D., Hansen E. J. 1994; Identification of a locus involved in the utilization of iron by Haemophilus influenzae . Infect Immun 62:4515–4525
    [Google Scholar]
  57. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73
    [Google Scholar]
  58. Schweizer H. P. 1991; Escherichia–Pseudomonas shuttle vectors derived from pUC18/19. Gene 97:109–121
    [Google Scholar]
  59. Simon R., Priefer U., Puehler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–791
    [Google Scholar]
  60. Sobel M. L., McKay G. A., Poole K. 2003; Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 47:3202–3207
    [Google Scholar]
  61. Sobel M. L., Poole K., Neshat S. 2005; Mutations in PA2491 ( mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa . J Bacteriol 187:1246–1253
    [Google Scholar]
  62. Srikumar R., Kon T., Gotoh N., Poole K. 1998; Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. Antimicrob Agents Chemother 42:65–71
    [Google Scholar]
  63. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  64. Velayudhan J., Hughes N. J., McColm A. A., Bagshaw J., Clayton C. L., Andrews S. C., Kelly D. J. 2000; Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol 37:274–286
    [Google Scholar]
  65. Visca P., Leoni L., Wilson M. J., Lamont I. L. 2002; Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas . Mol Microbiol 45:1177–1190
    [Google Scholar]
  66. Visca P., Imperi F., Lamont I. L. 2007; Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30
    [Google Scholar]
  67. Wyckoff E. E., Mey A. R., Leimbach A., Fisher C. F., Payne S. M. 2006; Characterization of ferric and ferrous iron transport systems in Vibrio cholerae . J Bacteriol 188:6515–6523
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023531-0
Loading
/content/journal/micro/10.1099/mic.0.023531-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed