1887

Abstract

The gene encodes a small non-translated RNA (referred to as GcvB) that regulates and , two genes that encode periplasmic binding proteins for the oligopeptide and dipeptide transport systems. Hfq, an RNA chaperone protein, binds many small RNAs and is required for the small RNAs to regulate expression of their respective target genes. We showed that repression by GcvB of  : :  and  : :  translational fusions is dependent upon Hfq. Double mutations in and yielded similar expression levels of  : :  and  : :  compared with or single mutations, suggesting that GcvB and Hfq repress by the same mechanism. The effect of Hfq is not through regulation of transcription of . Hfq is known to increase the stability of some small RNAs and to facilitate the interactions between small RNAs and specific mRNAs. In the absence of Hfq, there is a marked decrease in the half-life of GcvB in cells grown in both Luria–Bertani broth and glucose minimal medium with glycine, suggesting that part of the role of Hfq is to stabilize GcvB. Overproduction of GcvB in wild-type results in superrepression of a  : :  fusion, but overproduction of GcvB in an mutant does not result in significant repression of the  : :  fusion. These results suggest that Hfq also is likely required for GcvB–mRNA pairing.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023432-0
2009-01-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/115.html?itemId=/content/journal/micro/10.1099/mic.0.023432-0&mimeType=html&fmt=ahah

References

  1. Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S. & Ishihama, A. ( 1999; ). Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181, 6361–6370.
    [Google Scholar]
  2. Argaman, L., Hershberg, R., Vogel, J., Bejerano, G., Wagner, E. G., Margalit, H. & Altuvia, S. ( 2001; ). Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11, 941–950.[CrossRef]
    [Google Scholar]
  3. Brescia, C. C., Mikulecky, P. J., Feig, A. L. & Sledjeski, D. D. ( 2003; ). Identification of the Hfq-binding site on DsrA RNA: Hfq binds without altering DsrA secondary structure. RNA 9, 33–43.[CrossRef]
    [Google Scholar]
  4. Brickman, E. & Beckwith, J. ( 1975; ). Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and φ80 transducing phages. J Mol Biol 96, 307–316.[CrossRef]
    [Google Scholar]
  5. Chang, A. C. & Cohen, S. N. ( 1978; ). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134, 1141–1156.
    [Google Scholar]
  6. Chen, S., Zhang, A., Blyn, L. B. & Storz, G. ( 2004; ). MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J Bacteriol 186, 6689–6697.[CrossRef]
    [Google Scholar]
  7. Engler-Blum, G., Meier, M., Frank, J. & Muller, G. A. ( 1993; ). Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem 210, 235–244.[CrossRef]
    [Google Scholar]
  8. Franze de Fernandez, M. T., Eoyang, L. & August, J. T. ( 1968; ). Factor fraction required for the synthesis of bacteriophage Qβ-RNA. Nature 219, 588–590.[CrossRef]
    [Google Scholar]
  9. Gottesman, S. ( 2004; ). The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58, 303–328.[CrossRef]
    [Google Scholar]
  10. Guisbert, E., Rhodius, V. A., Ahuja, N., Witkin, E. & Gross, C. A. ( 2007; ). Hfq modulates the σ E-mediated envelope stress response and the σ 32-mediated cytoplasmic stress response in Escherichia coli. J Bacteriol 189, 1963–1973.[CrossRef]
    [Google Scholar]
  11. Hershberg, R., Altuvia, S. & Margalit, H. ( 2003; ). A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Res 31, 1813–1820.[CrossRef]
    [Google Scholar]
  12. Jourdan, A. D. & Stauffer, G. V. ( 1998; ). Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. J Bacteriol 180, 4865–4871.
    [Google Scholar]
  13. Kikuchi, G. ( 1973; ). The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1, 169–187.[CrossRef]
    [Google Scholar]
  14. Lease, R. A. & Belfort, M. ( 2000; ). A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. Proc Natl Acad Sci U S A 97, 9919–9924.[CrossRef]
    [Google Scholar]
  15. Ledeboer, N. A., Frye, J. G., McClelland, M. & Jones, B. D. ( 2006; ). Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect Immun 74, 3156–3169.[CrossRef]
    [Google Scholar]
  16. Masse, E. & Gottesman, S. ( 2002; ). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99, 4620–4625.[CrossRef]
    [Google Scholar]
  17. Miller, J. ( 1972; ). A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  18. Moll, I., Afonyushkin, T., Vytvytska, O., Kaberdin, V. R. & Blasi, U. ( 2003; ). Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9, 1308–1314.[CrossRef]
    [Google Scholar]
  19. Moller, T., Franch, T., Hojrup, P., Keene, D. R., Bachinger, H. P., Brennan, R. G. & Valentin-Hansen, P. ( 2002; ). Hfq: a bacterial Sm-like protein that mediates RNA–RNA interaction. Mol Cell 9, 23–30.[CrossRef]
    [Google Scholar]
  20. Opdyke, J. A., Kang, J. G. & Storz, G. ( 2004; ). GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186, 6698–6705.[CrossRef]
    [Google Scholar]
  21. Panasenko, S. M., Cameron, J. R., Davis, R. W. & Lehman, I. R. ( 1977; ). Five hundredfold overproduction of DNA ligase after induction of a hybrid lambda lysogen constructed in vitro. Science 196, 188–189.[CrossRef]
    [Google Scholar]
  22. Pulvermacher, S. C., Stauffer, L. T. & Stauffer, G. V. ( 2008; ). The role of the small regulatory RNA GcvB in GcvB/mRNA posttranscriptional regulation of oppA and dppA in Escherichia coli. FEMS Microbiol Lett 281, 42–50.[CrossRef]
    [Google Scholar]
  23. Sambrook, J., Fritsch, E. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Schumacher, M. A., Pearson, R. F., Moller, T., Valentin-Hansen, P. & Brennan, R. G. ( 2002; ). Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J 21, 3546–3556.[CrossRef]
    [Google Scholar]
  25. Sharma, C. M., Darfeuille, F., Plantinga, T. H. & Vogel, J. ( 2007; ). A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 21, 2804–2817.[CrossRef]
    [Google Scholar]
  26. Shimada, K., Weisberg, R. A. & Gottesman, M. E. ( 1972; ). Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J Mol Biol 63, 483–503.[CrossRef]
    [Google Scholar]
  27. Sledjeski, D. D., Whitman, C. & Zhang, A. ( 2001; ). Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183, 1997–2005.[CrossRef]
    [Google Scholar]
  28. Stauffer, L. T. & Stauffer, G. V. ( 1994; ). Characterization of the gcv control region from Escherichia coli. J Bacteriol 176, 6159–6164.
    [Google Scholar]
  29. Urbanowski, M. L. & Stauffer, G. V. ( 1986; ). Autoregulation by tandem promoters of the Salmonella typhimurium LT2 metJ gene. J Bacteriol 165, 740–745.
    [Google Scholar]
  30. Urbanowski, M. L., Stauffer, L. T. & Stauffer, G. V. ( 2000; ). The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol 37, 856–868.[CrossRef]
    [Google Scholar]
  31. Vecerek, B., Moll, I., Afonyushkin, T., Kaberdin, V. & Blasi, U. ( 2003; ). Interaction of the RNA chaperone Hfq with mRNAs: direct and indirect roles of Hfq in iron metabolism of Escherichia coli. Mol Microbiol 50, 897–909.[CrossRef]
    [Google Scholar]
  32. Vogel, H. J. & Bonner, D. M. ( 1956; ). Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218, 97–106.
    [Google Scholar]
  33. Wagner, E. G. & Flardh, K. ( 2002; ). Antisense RNAs everywhere? Trends Genet 18, 223–226.[CrossRef]
    [Google Scholar]
  34. Wassarman, K. M. ( 2002; ). Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell 109, 141–144.[CrossRef]
    [Google Scholar]
  35. Wassarman, K. M., Zhang, A. & Storz, G. ( 1999; ). Small RNAs in Escherichia coli. Trends Microbiol 7, 37–45.[CrossRef]
    [Google Scholar]
  36. Wassarman, K. M., Repoila, F., Rosenow, C., Storz, G. & Gottesman, S. ( 2001; ). Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15, 1637–1651.[CrossRef]
    [Google Scholar]
  37. Wilson, R. L., Stauffer, L. T. & Stauffer, G. V. ( 1993; ). Roles of the GcvA and PurR proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 175, 5129–5134.
    [Google Scholar]
  38. Zhang, A., Altuvia, S., Tiwari, A., Argaman, L., Hengge-Aronis, R. & Storz, G. ( 1998; ). The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J 17, 6061–6068.[CrossRef]
    [Google Scholar]
  39. Zhang, A., Wassarman, K. M., Ortega, J., Steven, A. C. & Storz, G. ( 2002; ). The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9, 11–22.[CrossRef]
    [Google Scholar]
  40. Zhang, A., Wassarman, K. M., Rosenow, C., Tjaden, B. C., Storz, G. & Gottesman, S. ( 2003; ). Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50, 1111–1124.[CrossRef]
    [Google Scholar]
  41. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023432-0
Loading
/content/journal/micro/10.1099/mic.0.023432-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error