Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid Free

Abstract

Conjugated linoleic acid (CLA) is formed from linoleic acid (LA; -9,-12-18 : 2) by intestinal bacteria. Different CLA isomers have different implications for human health. The aim of this study was to investigate LA metabolism and the CLA isomers formed in two individuals (V1 and V2) with different faecal metabolic characteristics, and to compare fatty acid metabolism with the microbial community composition. LA incubated with faecal samples was metabolized at similar rates with both subjects, but the products were different. LA was metabolized extensively to stearic acid (SA; 18 : 0) in V1, with minor accumulation of CLA and more rapid accumulation of vaccenic acid (VA; -11-18 : 1). CLA accumulation at 4 h was almost tenfold higher with V2, and little SA was formed. At least 12 different isomers of CLA were produced from LA by the colonic bacteria from the two individuals. The predominant (>75 %) CLA isomer in V1 was rumenic acid (RA; -9,-11-18 : 2), whereas the concentrations of RA and -10,-12-18 : 2 were similar with V2. Propionate and butyrate proportions in short-chain fatty acids were higher in V1. A 16S rRNA clone library from V1 contained mainly (54 % of clones), whereas (66 % of clones) predominated in V2. Both samples were devoid of bacteria related to , the only gut bacterium known to metabolize VA to SA. Thus, the CLA formed in the intestine of different individuals may differ according to their resident microbiota, with possibly important implications with respect to gut health.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023416-0
2009-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/513.html?itemId=/content/journal/micro/10.1099/mic.0.023416-0&mimeType=html&fmt=ahah

References

  1. Alonso L., Cuesta E. P., Gilliland S. E. 2003; Production of free conjugated linoleic acid by Lactobacillus acidophilus and Lactobacillus casei of human intestinal origin. J Dairy Sci 86:1941–1946
    [Google Scholar]
  2. Barcenilla A., Pryde S. E., Martin J. C., Duncan S. H., Stewart C. S., Henderson C., Flint H. J. 2000; Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661
    [Google Scholar]
  3. Bassaganya-Riera J., Hontecillas R. 2006; CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clin Nutr 25:454–465
    [Google Scholar]
  4. Bassaganya-Riera J., Reynolds K., Martino-Catt S., Cui Y., Hennighausen L., Gonzalez F., Rohrer J., Benninghoff A. U., Hontecillas R. 2004; Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–791
    [Google Scholar]
  5. Beppu F., Hosokawa M., Tanaka L., Kohno H., Tanaka T., Miyashita K. 2006; Potent inhibitory effect of trans -9, trans -11 isomer of conjugated linoleic acid on the growth of human colon cancer cells. J Nutr Biochem 17:830–836
    [Google Scholar]
  6. Chin S. F., Storkson J. M., Liu W., Albright K. J., Pariza M. W. 1994; Conjugated linoleic acid (9,11- and 10,12-octodecadienoic acid) is produced in conventional but not germ-free rats fed linoleic acid. J Nutr 124:694–701
    [Google Scholar]
  7. Cho H. J., Kim W. K., Jung J. I., Kim E. J., Lim S. S., Kwon D. Y., Park J. H. 2005; trans -10, cis -12, not cis -9, trans -11, conjugated linoleic acid decreases ErbB3 expression in HT-29 human colon cancer cells. World J Gastroenterol 11:5142–5150
    [Google Scholar]
  8. Clement L., Poirier H., Niot I., Bocher V., Guerre-Millo M., Krief S., Staels B., Besnard P. 2002; Dietary trans -10, cis -12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43:1400–1409
    [Google Scholar]
  9. Coakley M., Ross R. P., Nordgren M., Fitzgerald G., Devery R., Stanton C. 2003; Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145
    [Google Scholar]
  10. Cole J. R., Chai B., Farris R. J., Wang Q., Kulam S. A., McGarrell D. M., Garrity G. M., Tiedje J. M. 2005; The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296
    [Google Scholar]
  11. Devillard E., McIntosh F. M., Newbold C. J., Wallace R. J. 2006; Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Br J Nutr 96:697–704
    [Google Scholar]
  12. Devillard E., McIntosh F. M., Duncan S. H., Wallace R. J. 2007; Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189:2566–2570
    [Google Scholar]
  13. Duncan S. H., Louis P., Flint H. J. 2007; Cultivable bacterial diversity from the human colon. Lett Appl Microbiol 44:343–350
    [Google Scholar]
  14. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638
    [Google Scholar]
  15. Ewaschuk J. B., Walker J. W., Diaz H., Madsen K. L. 2006; Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr 136:1483–1487
    [Google Scholar]
  16. Eyssen H., Parmentier G. 1974; Biohydrogenation of sterols and fatty acids by the intestinal microflora. Am J Clin Nutr 27:1329–1340
    [Google Scholar]
  17. Fay L., Richli U. 1991; Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatog 541:89–98
    [Google Scholar]
  18. Flint H. J., Duncan S. H., Scott K. P., Louis P. 2007; Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111
    [Google Scholar]
  19. Folch J., Lees M., Soane G. H. 1957; A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509
    [Google Scholar]
  20. Harfoot C. G., Hazlewood G. P. 1997; Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem pp 348–426 Edited by Hobson P. N., Stewart C. S. London: Chapman & Hall;
    [Google Scholar]
  21. Hauptman J., Lucas C., Boldrin M. N., Collins H., Segal K. R. 2000; Orlistat in the long-term treatment of obesity in primary care settings. Arch Fam Med 9:160–167
    [Google Scholar]
  22. Hayashi H., Takahashi R., Nishi T., Sakamoto M., Benno Y. 2005; Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 54:1093–1101
    [Google Scholar]
  23. Hontecillas R., Wannemeulher M. J., Zimmerman D. R., Hutto D. L., Wilson J. H., Ahn D. U., Bassaganya-Riera J. 2002; Nutritional regulation of porcine bacterial-induced colitis by conjugated linoleic acid. J Nutr 132:2019–2027
    [Google Scholar]
  24. Howard F. A. C., Henderson C. 1999; Hydrogenation of polyunsaturated fatty acids by human colonic bacteria. Lett Appl Microbiol 29:193–196
    [Google Scholar]
  25. Kamlage B., Hartmann L., Gruhl B., Blaut M. 1999; Intestinal microorganisms do not supply associated gnotobiotic rats with conjugated linoleic acid. J Nutr 129:2212–2217
    [Google Scholar]
  26. Kamlage B., Hartmann L., Gruhl B., Blaut M. 2000; Linoleic acid conjugation by human intestinal microorganisms is inhibited by glucose and other substrates in vitro and in gnotobiotic rats. J Nutr 130:2036–2039
    [Google Scholar]
  27. Lampen A., Leifheit M., Voss J., Nau H. 2005; Molecular and cellular effects of cis -9, trans -11-conjugated linoleic acid in enterocytes: effects on proliferation, differentiation, and gene expression. Biochim Biophys Acta 173530–40
    [Google Scholar]
  28. Lawson R. E., Moss A. R., Givens D. I. 2001; The role of dairy products in supplying conjugated linoleic acid to man's diet: a review. Nutr Res Rev 14:153–172
    [Google Scholar]
  29. Lee K. W., Lee H. J., Cho H. Y., Kim Y. J. 2005; Role of the conjugated linoleic acid in the prevention of cancer. Crit Rev Food Sci Nutr 45:135–144
    [Google Scholar]
  30. Marteau P., Pochart P., Dore J., Bera-Maillet C., Bernalier A., Corthier G. 2001; Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67:4939–4942
    [Google Scholar]
  31. McLeod R. S., LeBlanc A. M., Langille M. A., Mitchell P. L., Currie D. L. 2004; Conjugated linoleic acids, atherosclerosis, and hepatic very-low-density lipoprotein metabolism. Am J Clin Nutr 79:1169S–1174S
    [Google Scholar]
  32. Miller A., McGrath E., Stanton C., Devery R. 2003; Vaccenic acid (t11–18 : 1) is converted to c9,t11-CLA in MCF-7 and SW480 cancer cells. Lipids 38:623–632
    [Google Scholar]
  33. O'Shea M., Bassaganya-Riera J., Mohede I. C. 2004; Immunomodulatory properties of conjugated linoleic acid. Am J Clin Nutr 79:1199S–1206S
    [Google Scholar]
  34. Paillard D., McKain N., Rincon M. T., Shingfield K. J., Givens D. I., Wallace R. J. 2007; Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. J Appl Microbiol 103:1251–1261
    [Google Scholar]
  35. Richardson A. J., Calder G. C., Stewart C. S., Smith A. 1989; Simultaneous determination of volatile and non-volatile fermentation products of anaerobes by capillary gas chromatography. Lett Appl Microbiol 9:5–8
    [Google Scholar]
  36. Shingfield K. J., Ahvenjärvi S., Toivonen V., Ärölä A., Nurmela K. V. V., Huhtanen P., Griinari J. M. 2003; Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim Sci 77:165–180
    [Google Scholar]
  37. Shingfield K. J., Reynolds C. K., Hervás G., Griinari J. M., Grandison A. S., Beever D. E. 2006; Examination of the persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet of dairy cows. J Dairy Sci 89:714–732
    [Google Scholar]
  38. Suau A., Bonnet R., Sutren M., Godon J. J., Gibson G. R., Collins M. D., Dore J. 1999; Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807
    [Google Scholar]
  39. Tricon S., Burdge G. C., Williams C. M., Calder P. C., Yaqoob P. 2005; The effects of conjugated linoleic acid on human health-related outcomes. Proc Nutr Soc 64:171–182
    [Google Scholar]
  40. Wahle K. W., Heys S. D., Rotondo D. 2004; Conjugated linoleic acids: are they beneficial or detrimental to health?. Prog Lipid Res 43:553–587
    [Google Scholar]
  41. Wallace R. J., Chaudhary L. C., McKain N., McEwan N. R., Richardson A. J., Vercoe P. E., Walker N. D., Paillard D. 2006; Clostridium proteoclasticum : a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol Lett 265:195–201
    [Google Scholar]
  42. Wang Y. W., Jones P. J. 2004; Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int J Obes Relat Metab Disord 28:941–955
    [Google Scholar]
  43. Waşowska I., Maia M. R. G., Niedzwiedzka K. M., Czauderna M., Ramalho Ribeiro J. M. C., Devillard E., Shingfield K. J., Wallace R. J. 2006; Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br J Nutr 95:1199–1211
    [Google Scholar]
  44. Zoetendal E. G., Akkermans A. D., De Vos W. M. 1998; Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023416-0
Loading
/content/journal/micro/10.1099/mic.0.023416-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed