1887

Abstract

Bacterial spores possess a series of concentrically arranged protective structures that contribute to dormancy, survival and, ultimately, germination. One of these structures, the coat, is present in all spores. In , however, the spore is surrounded by an additional, poorly understood, morphologically complex structure called the exosporium. Here, we characterize three previously discovered exosporium proteins called ExsFA (also known as BxpB), ExsFB (a highly related paralogue of ) and IunH (similar to an inosine–uridine-preferring nucleoside hydrolase). We show that in the absence of ExsFA/BxpB, the exosporium protein BclA accumulates asymmetrically to the forespore pole closest to the midpoint of the sporangium (i.e. the mother-cell-proximal pole of the forespore), instead of uniformly encircling the exosporium. ExsFA/BxpB may also have a role in coat assembly, as mutant spore surfaces lack ridges seen in wild-type spores and have a bumpy appearance. ExsFA/BxpB also has a modest but readily detected effect on germination. Nonetheless, an mutant strain is fully virulent in both intramuscular and aerosol challenge models in Guinea pigs. We show that the pattern of localization of ExsFA/BxpB–GFP is a ring, consistent with a location for this protein in the basal layer of the exosporium. In contrast, ExsFB–GFP fluorescence is a solid oval, suggesting a distinct subcellular location for ExsFB–GFP. We also used these fusion proteins to monitor changes in the subcellular locations of these proteins during sporulation. Early in sporulation, both fusions were present throughout the mother cell cytoplasm. As sporulation progressed, GFP fluorescence moved from the mother cell cytoplasm to the forespore surface and formed either a ring of fluorescence, in the case of ExsFA/BxpB, or a solid oval of fluorescence, in the case of ExsFB. IunH–GFP also resulted in a solid oval of fluorescence. We suggest the interpretation that at least some ExsFB–GFP and IunH–GFP resides in the region between the coat and the exosporium, called the interspace.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023333-0
2009-04-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1133.html?itemId=/content/journal/micro/10.1099/mic.0.023333-0&mimeType=html&fmt=ahah

References

  1. Alibek K.. 1999; Biohazard New York: Random House;
  2. Aronson A. I., Fitz-James P.. 1976; Structure and morphogenesis of the bacterial spore coat. Bacteriol Rev40:360–402
    [Google Scholar]
  3. Basu S., Kang T. J., Chen W. H., Fenton M. J., Baillie L., Hibbs S., Cross A. S.. 2007; Role of Bacillus anthracis spore structures in macrophage cytokine responses. Infect Immun75:2351–2358
    [Google Scholar]
  4. Bauer T., Little S., Stöver A. G., Driks A.. 1999; Functional regions of the Bacillus subtilis spore coat morphogenetic protein CotE. J Bacteriol181:7043–7051
    [Google Scholar]
  5. Boydston J. A., Chen P., Steichen C. T., Turnbough C. L. Jr. 2005; Orientation within the exosporium and structural stability of the collagen-like glycoprotein BclA of Bacillus anthracis . J Bacteriol187:5310–5317
    [Google Scholar]
  6. Boydston J. A., Yue L., Kearney J. F., Turnbough C. L. Jr. 2006; The ExsY protein is required for complete formation of the exosporium of Bacillus anthracis . J Bacteriol188:7440–7448
    [Google Scholar]
  7. Bozue J. A., Parthasarathy N., Phillips L. R., Cote C. K., Fellows P. F., Mendelson I., Shafferman A., Friedlander A. M.. 2005; Construction of a rhamnose mutation in Bacillus anthracis affects adherence to macrophages but not virulence in guinea pigs. Microb Pathog38:1–12
    [Google Scholar]
  8. Bozue J., Cote C. K., Moody K. L., Welkos S. L.. 2007a; Fully virulent Bacillus anthracis does not require the immunodominant protein BclA for pathogenesis. Infect Immun75:508–511
    [Google Scholar]
  9. Bozue J., Moody K. L., Cote C. K., Stiles B. G., Friedlander A. M., Welkos S. L., Hale M. L.. 2007b; Bacillus anthracis spores of the bclA mutant exhibit increased adherence to epithelial, fibroblast, and endothelial cells but not macrophages. Infect Immun75:4498–4505
    [Google Scholar]
  10. Brahmbhatt T. N., Janes B. K., Stibitz E. S., Darnell S. C., Sanz P., Rasmussen S. B., O'Brien A. D.. 2007; Bacillus anthracis exosporium protein BclA affects spore germination, interaction with extracellular matrix proteins, and hydrophobicity. Infect Immun75:5233–5239
    [Google Scholar]
  11. Brossier F., Levy M., Mock M.. 2002; Anthrax spores make an essential contribution to vaccine efficacy. Infect Immun70:661–664
    [Google Scholar]
  12. Catalano F. A., Meador-Parton J., Popham D. L., Driks A.. 2001; Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation. J Bacteriol183:1645–1654
    [Google Scholar]
  13. Chada V. G., Sanstad E. A., Wang R., Driks A.. 2003; Morphogenesis of Bacillus spore surfaces. J Bacteriol185:6255–6261
    [Google Scholar]
  14. Cown W. B., Kethley T. W., Fincher E. L.. 1957; The critical-orifice liquid impinger as a sampler for bacterial aerosols. Appl Microbiol5:119–124
    [Google Scholar]
  15. Cybulski R. J. Jr, Sanz P., McDaniel D., Darnell S., Bull R. L., O'Brien A. D.. 2008; Recombinant Bacillus anthracis spore proteins enhance protection of mice primed with suboptimal amounts of protective antigen. Vaccine26:4927–4939
    [Google Scholar]
  16. Dowd M. M., Orsburn B., Popham D. L.. 2008; Cortex peptidoglycan lytic activity in germinating Bacillus anthracis spores. J Bacteriol190:4541–4548
    [Google Scholar]
  17. Eichenberger P., Jensen S. T., Conlon E. M., van Ooij C., Silvaggi J., González-Pastor J. E., Fujita M., Ben-Yehuda S., Stragier P.. other authors 2003; The σ E regulon and the identification of additional sporulation genes in Bacillus subtilis . J Mol Biol327:945–972
    [Google Scholar]
  18. Enkhtuya J., Kawamoto K., Kobayashi Y., Uchida I., Rana N., Makino S.. 2006; Significant passive protective effect against anthrax by antibody to Bacillus anthracis inactivated spores that lack two virulence plasmids. Microbiology152:3103–3110
    [Google Scholar]
  19. Fotiadis D., Scheuring S., Muller S. A., Engel A., Muller D. J.. 2002; Imaging and manipulation of biological structures with the AFM. Micron33:385–397
    [Google Scholar]
  20. Fox A., Stewart G. C., Wallera L. N., Fox K. F., Harley W. M., Price R. L.. 2003; Carbohydrates and glycoproteins of Bacillus anthracis and related bacilli: targets for biodetection. J Microbiol Methods54:143–152
    [Google Scholar]
  21. Friedlander A. M., Welkos S. L., Pitt M. L., Ezzell J. W., Worsham P. L., Rose K. J., Ivins B. E., Lowe J. R., Howe G. B.. & other authors. 1993; Postexposure prophylaxis against experimental inhalation anthrax. J Infect Dis167:1239–1243
    [Google Scholar]
  22. Fritze D.. 2004; Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology94:1245–1248
    [Google Scholar]
  23. Giorno R., Bozue J., Cote C., Wenzel T., Moody K. S., Mallozzi M., Ryan M., Wang R., Zielke R.. other authors 2007; Morphogenesis of the Bacillus anthracis spore coat. J Bacteriol189:691–705
    [Google Scholar]
  24. Hahn U. K., Boehm R., Beyer W.. 2006; DNA vaccination against anthrax in mice – combination of anti-spore and anti-toxin components. Vaccine24:4569–4571
    [Google Scholar]
  25. Harwood C. R., Cutting S. M.. 1990; Molecular Biological Methods for Bacillus Chichester, UK: John Wiley;
  26. Holt S. C., Leadbetter E. R.. 1969; Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriol Rev33:346–378
    [Google Scholar]
  27. Institute of Laboratory Animal Resources, Commission on Life Sciences, & National Research Council 1996; Guide for the Care and Use of Laboratory Animals Washington, DC: National Academy Press;
  28. Ivins B. E., Welkos S. L., Knudson G. B., Little S. F.. 1990; Immunization against anthrax with aromatic compound-dependent (Aro) mutants of Bacillus anthracis and with recombinant strains of Bacillus subtilis that produce anthrax protective antigen. Infect Immun58:303–308
    [Google Scholar]
  29. Ivins B. E., Fellows P. F., Nelson G. O.. 1994; Efficacy of a standard human anthrax vaccine against Bacillus anthracis spore challenge in guinea-pigs. Vaccine12:872–874
    [Google Scholar]
  30. Kim H., Hahn M., Grabowski P., McPherson D. C., Wang R., Ferguson C., Eichenberger P., Driks A.. 2006; The Bacillus subtilis spore coat protein interaction network. Mol Microbiol59:487–502
    [Google Scholar]
  31. Koch R.. 1876; The etiology of anthrax, based on the life history of Bacillus anthracis . Beitr Biol Pflanz2:277–310
    [Google Scholar]
  32. Koehler T. M., Dai Z., Kaufman-Yarbray M.. 1994; Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans -acting element activate transcription from one of two promoters. J Bacteriol176:586–595
    [Google Scholar]
  33. La Duc M. T., Satomi M., Venkateswaran K.. 2004; Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. Int J Syst Evol Microbiol54:195–201
    [Google Scholar]
  34. Lai E.-M., Phadke N. D., Kachman M. T., Giorno R. S. V., Vazquez J. A., Maddock J. R., Driks A.. 2003; Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis . J Bacteriol185:1443–1454
    [Google Scholar]
  35. Leighton T. J., Doi R. H.. 1971; The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis . J Biol Chem246:3189–3195
    [Google Scholar]
  36. Lemon K. P., Grossman A. D.. 1998; Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science282:1516–1519
    [Google Scholar]
  37. Little S. F., Knudson G. B.. 1986; Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig. Infect Immun52:509–512
    [Google Scholar]
  38. Losick R., Youngman P., Piggot P. J.. 1986; Genetics of endospore formation in Bacillus subtilis . Annu Rev Genet20:625–669
    [Google Scholar]
  39. Mallozzi M., Bozue J., Giorno R., Moody K. S., Slack A., Cote C., Qiu D., Wang R., McKenney P.. other authors 2008; Characterization of a Bacillus anthracis spore coat-surface protein that influences coat-surface morphology. FEMS Microbiol Lett289:110–117
    [Google Scholar]
  40. Mann H. B., Whitney D. R.. 1947; On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat18:50–60
    [Google Scholar]
  41. Matz L. L., Beaman T. C., Gerhardt P.. 1970; Chemical composition of exosporium from spores of Bacillus cereus . J Bacteriol101:196–201
    [Google Scholar]
  42. May K. R.. 1973; The collision nebulizer, description, performance, and applications. J Aerosol Sci4:235–243
    [Google Scholar]
  43. McPherson D. C., Kim H., Hahn M., Wang R., Grabowski P., Eichenberger P., Driks A.. 2005; Characterization of the Bacillus subtilis spore coat morphogenetic protein CotO. J Bacteriol187:8278–8290
    [Google Scholar]
  44. Mendelson I., Tobery S., Scorpio A., Bozue J., Shafferman A., Friedlander A. M.. 2004; The NheA component of the non-hemolytic enterotoxin of Bacillus cereus is produced by Bacillus anthracis but is not required for virulence. Microb Pathog37:149–154
    [Google Scholar]
  45. Mock M., Fouet A.. 2001; Anthrax. Annu Rev Microbiol55:647–671
    [Google Scholar]
  46. Moir A., Corfe B. M., Behravan J.. 2002; Spore germination. Cell Mol Life Sci59:403–409
    [Google Scholar]
  47. Nicholson W. L.. 2002; Roles of Bacillus endospores in the environment. Cell Mol Life Sci59:410–416
    [Google Scholar]
  48. Ohye D. F., Murrell W. G.. 1973; Exosporium and spore coat formation in Bacillus cereus T. J Bacteriol115:1179–1190
    [Google Scholar]
  49. Oliva C. R., Swiecki M. K., Griguer C. E., Lisanby M. W., Bullard D. C., Turnbough C. L. Jr, Kearney J. F.. 2008; The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes. Proc Natl Acad Sci U S A105:1261–1266
    [Google Scholar]
  50. Perez-Casal J., Caparon M. G., Scott J. R.. 1991; Mry, a trans -acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol173:2617–2624
    [Google Scholar]
  51. Plomp M., Leighton T., Wheeler K. E., Malkin A. J.. 2004; The high-resolution architecture and structural dynamics of Bacillus spores. Biophys J88:603–608
    [Google Scholar]
  52. Pogliano K., Harry E., Losick R.. 1995; Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol Microbiol18:459–470
    [Google Scholar]
  53. Popham D. L.. 2002; Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell Mol Life Sci59:426–433
    [Google Scholar]
  54. Redmond C., Baillie L. W., Hibbs S., Moir A. J., Moir A.. 2004; Identification of proteins in the exosporium of Bacillus anthracis . Microbiology150:355–363
    [Google Scholar]
  55. Rety S., Salamitou S., Garcia-Verdugo I., Hulmes D. J., Le Hegarat F., Chaby R., Lewit-Bentley A.. 2005; The crystal structure of the Bacillus anthracis spore surface protein BclA shows remarkable similarity to mammalian proteins. J Biol Chem280:43073–43078
    [Google Scholar]
  56. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  57. Setlow P.. 2006; Spores of Bacillus subtilis : their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol101:514–525
    [Google Scholar]
  58. Shao Z., Mou J., Czajkowsky D. M., Yang J., Yuan J. Y.. 1996; Biological atomic force microscopy: what is achieved and what is needed. Adv Phys45:1–86
    [Google Scholar]
  59. Shatalin K. Y., Neyfakh A. A.. 2005; Efficient gene inactivation in Bacillus anthracis . FEMS Microbiol Lett245:315–319
    [Google Scholar]
  60. Steichen C., Chen P., Kearney J. F., Turnbough C. L. Jr. 2003; Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J Bacteriol185:1903–1910
    [Google Scholar]
  61. Steichen C. T., Kearney J. F., Turnbough C. L. Jr. 2005; Characterization of the exosporium basal layer protein BxpB of Bacillus anthracis . J Bacteriol187:5868–5876
    [Google Scholar]
  62. Steichen C. T., Kearney J. F., Turnbough C. L. Jr. 2007; Non-uniform assembly of the Bacillus anthracis exosporium and a bottle cap model for spore germination and outgrowth. Mol Microbiol64:359–367
    [Google Scholar]
  63. Sylvestre P., Couture-Tosi E., Mock M.. 2002; A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol45:169–178
    [Google Scholar]
  64. Sylvestre P., Couture-Tosi E., Mock M.. 2003; Polymorphism in the collagen-like region of the Bacillus anthracis BclA protein leads to variation in exosporium filament length. J Bacteriol185:1555–1563
    [Google Scholar]
  65. Sylvestre P., Couture-Tosi E., Mock M.. 2005; Contribution of ExsFA and ExsFB proteins to the localization of BclA on the spore surface and to the stability of the Bacillus anthracis exosporium. J Bacteriol187:5122–5128
    [Google Scholar]
  66. Thompson B. M., Waller L. N., Fox K. F., Fox A., Stewart G. C.. 2007; The BclB glycoprotein of Bacillus anthracis is involved in exosporium integrity. J Bacteriol189:6704–6713
    [Google Scholar]
  67. Thorne C. B.. 1968; Transduction in Bacillus cereus and Bacillus anthracis . Bacteriol Rev32:358–361
    [Google Scholar]
  68. Todd S. J., Moir A. J., Johnson M. J., Moir A.. 2003; Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J Bacteriol185:3373–3378
    [Google Scholar]
  69. van Ooij C., Eichenberger P., Losick R.. 2004; Dynamic patterns of subcellular protein localization during spore coat morphogenesis in Bacillus subtilis . J Bacteriol186:4441–4448
    [Google Scholar]
  70. Vary P. S.. 1994; Prime time for Bacillus megaterium . Microbiology140:1001–1013
    [Google Scholar]
  71. Waller L. N., Stump M. J., Fox K. F., Harley W. M., Fox A., Stewart G. C., Shahgholi M.. 2005; Identification of a second collagen-like glycoprotein produced by Bacillus anthracis and demonstration of associated spore-specific sugars. J Bacteriol187:4592–4597
    [Google Scholar]
  72. Wang R., Krishnamurthy S. N., Jeong J. S., Driks A., Mehta M., Gingras B. A.. 2007; Fingerprinting species and strains of Bacilli spores by distinctive coat surface morphology. Langmuir23:10230–10234
    [Google Scholar]
  73. Warth A. D., Ohye D. F., Murrell W. G.. 1963; The composition and structure of bacterial spores. J Cell Biol16:579–592
    [Google Scholar]
  74. Weaver J., Kang T. J., Raines K. W., Cao G. L., Hibbs S., Tsai P., Baillie L., Rosen G. M., Cross A. S.. 2007; Protective role of Bacillus anthracis exosporium in macrophage-mediated killing by nitric oxide. Infect Immun75:3894–3901
    [Google Scholar]
  75. Welkos S. L., Cote C. K., Rea K. M., Gibbs P. H.. 2004; A microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies. J Microbiol Methods56:253–265
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023333-0
Loading
/content/journal/micro/10.1099/mic.0.023333-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error