1887

Abstract

Type II protein secretion plays a role in a wide variety of functions that are important for the ecology and pathogenesis of . Perhaps most dramatic is the critical role that this secretion pathway has in intracellular infection of aquatic protozoa. Recently, we showed that virulent strain 130b secretes RNase activity through its type II secretion system. We now report the cloning and mutational analysis of the gene () encoding that novel type of secreted activity. The SrnA protein was defined as being a member of the T2 family of secreted RNases. Supernatants from mutants inactivated for completely lacked RNase activity, indicating that SrnA is the major secreted RNase of . Although mutants grew normally in bacteriological media and human U937 cell macrophages, they were impaired in their ability to grow within amoebae. This finding represents the second identification of a type II effector being necessary for optimal intracellular infection of amoebae, with the first being the ProA zinc metalloprotease. Newly constructed double mutants displayed an even larger infection defect that appeared to be the additive result of losing both SrnA and ProA. Overall, these data represent the first demonstration of a secreted RNase promoting an intracellular infection event, and support our long-standing hypothesis that the infection defects of type II secretion mutants are due to the loss of multiple secreted effectors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023218-0
2009-03-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/882.html?itemId=/content/journal/micro/10.1099/mic.0.023218-0&mimeType=html&fmt=ahah

References

  1. Allard, K. A., Viswanathan, V. K. & Cianciotto, N. P. ( 2006; ). lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 188, 1351–1363.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Aragon, V., Kurtz, S., Flieger, A., Neumeister, B. & Cianciotto, N. P. ( 2000; ). Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila. Infect Immun 68, 1855–1863.[CrossRef]
    [Google Scholar]
  4. Aragon, V., Kurtz, S. & Cianciotto, N. P. ( 2001; ). Legionella pneumophila major acid phosphatase and its role in intracellular infection. Infect Immun 69, 177–185.[CrossRef]
    [Google Scholar]
  5. Aragon, V., Rossier, O. & Cianciotto, N. P. ( 2002; ). Legionella pneumophila genes that encode lipase and phospholipase C activities. Microbiology 148, 2223–2231.
    [Google Scholar]
  6. Aravind, L. & Koonin, E. V. ( 2001; ). A natural classification of ribonucleases. Methods Enzymol 341, 3–28.
    [Google Scholar]
  7. Arella, M. & Sylvestre, M. ( 1979; ). Production of an extracellular ribonuclease by Pseudomonas maltophilia. Can J Microbiol 25, 321–328.[CrossRef]
    [Google Scholar]
  8. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1989; ). Current Protocols in Molecular Biology. New York: Wiley.
  9. Banerji, S., Bewersdorff, M., Hermes, B., Cianciotto, N. P. & Flieger, A. ( 2005; ). Characterization of the major secreted zinc metalloprotease-dependent glycerophospholipid:cholesterol acyltransferase, PlaC, of Legionella pneumophila. Infect Immun 73, 2899–2909.[CrossRef]
    [Google Scholar]
  10. Bravo, J., Fernandez, E., Ribo, M., de Llorens, R. & Cuchillo, C. M. ( 1994; ). A versatile negative-staining ribonuclease zymogram. Anal Biochem 219, 82–86.[CrossRef]
    [Google Scholar]
  11. Cazalet, C., Rusniok, C., Bruggemann, H., Zidane, N., Magnier, A., Ma, L., Tichit, M., Jarraud, S., Bouchier, C. & other authors ( 2004; ). Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36, 1165–1173.[CrossRef]
    [Google Scholar]
  12. Chien, M., Morozova, I., Shi, S., Sheng, H., Chen, J., Gomez, S. M., Asamani, G., Hill, K., Nuara, J. & other authors ( 2004; ). The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305, 1966–1968.[CrossRef]
    [Google Scholar]
  13. Cianciotto, N. P. ( 2005; ). Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13, 581–588.[CrossRef]
    [Google Scholar]
  14. Cianciotto, N. P. & Fields, B. S. ( 1992; ). Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci U S A 89, 5188–5191.[CrossRef]
    [Google Scholar]
  15. Cianciotto, N. P., Eisenstein, B. I., Mody, C. H., Toews, G. B. & Engleberg, N. C. ( 1989; ). A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect Immun 57, 1255–1262.
    [Google Scholar]
  16. DebRoy, S., Aragon, V., Kurtz, S. & Cianciotto, N. P. ( 2006a; ). Legionella pneumophila Mip, a surface-exposed peptidylproline cis-trans-isomerase, promotes the presence of phospholipase C-like activity in culture supernatants. Infect Immun 74, 5152–5160.[CrossRef]
    [Google Scholar]
  17. DebRoy, S., Dao, J., Soderberg, M., Rossier, O. & Cianciotto, N. P. ( 2006b; ). Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A 103, 19146–19151.[CrossRef]
    [Google Scholar]
  18. De Buck, E., Anne, J. & Lammertyn, E. ( 2007; ). The role of protein secretion systems in the virulence of the intracellular pathogen Legionella pneumophila. Microbiology 153, 3948–3953.[CrossRef]
    [Google Scholar]
  19. Desai, N. A. & Shankar, V. ( 2003; ). Single-strand-specific nucleases. FEMS Microbiol Rev 26, 457–491.[CrossRef]
    [Google Scholar]
  20. Deshpande, R. A. & Shankar, V. ( 2002; ). Ribonucleases from T2 family. Crit Rev Microbiol 28, 79–122.[CrossRef]
    [Google Scholar]
  21. Diederen, B. M. ( 2008; ). Legionella spp. and Legionnaires' disease. J Infect 56, 1–12.[CrossRef]
    [Google Scholar]
  22. Dyer, K. D. & Rosenberg, H. F. ( 2006; ). The RNase A superfamily: generation of diversity and innate host defense. Mol Divers 10, 585–597.[CrossRef]
    [Google Scholar]
  23. Edwards, R. A., Keller, L. H. & Schifferli, D. M. ( 1998; ). Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207, 149–157.[CrossRef]
    [Google Scholar]
  24. Engleberg, N. C., Drutz, D. J. & Eisenstein, B. I. ( 1984; ). Cloning and expression of Legionella pneumophila antigens in Escherichia coli. Infect Immun 44, 222–227.
    [Google Scholar]
  25. Favre, D., Ngai, P. K. & Timmis, K. N. ( 1993; ). Relatedness of a periplasmic, broad-specificity RNase from Aeromonas hydrophila to RNase I of Escherichia coli and to a family of eukaryotic RNases. J Bacteriol 175, 3710–3722.
    [Google Scholar]
  26. Fields, B. S., Benson, R. F. & Besser, R. E. ( 2002; ). Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 15, 506–526.[CrossRef]
    [Google Scholar]
  27. Filloux, A. ( 2004; ). The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694, 163–179.[CrossRef]
    [Google Scholar]
  28. Flieger, A., Gong, S., Faigle, M., Stevanovic, S., Cianciotto, N. P. & Neumeister, B. ( 2001; ). Novel lysophospholipase A secreted by Legionella pneumophila. J Bacteriol 183, 2121–2124.[CrossRef]
    [Google Scholar]
  29. Flieger, A., Neumeister, B. & Cianciotto, N. P. ( 2002; ). Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine. Infect Immun 70, 6094–6106.[CrossRef]
    [Google Scholar]
  30. Forest, K. T. ( 2008; ). The type II secretion arrowhead: the structure of GspI-GspJ-GspK. Nat Struct Mol Biol 15, 428–430.[CrossRef]
    [Google Scholar]
  31. Galka, F., Wai, S. N., Kusch, H., Engelmann, S., Hecker, M., Schmeck, B., Hippenstiel, S., Uhlin, B. E. & Steinert, M. ( 2008; ). Proteomic characterisation of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 76, 1825–1836.[CrossRef]
    [Google Scholar]
  32. Gardy, J. L., Laird, M. R., Chen, F., Rey, S., Walsh, C. J., Ester, M. & Brinkman, F. S. ( 2005; ). PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21, 617–623.[CrossRef]
    [Google Scholar]
  33. Glockner, G., Albert-Weissenberger, C., Weinmann, E., Jacobi, S., Schunder, E., Steinert, M., Hacker, J. & Heuner, K. ( 2008; ). Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol 298, 411–428.[CrossRef]
    [Google Scholar]
  34. Grindley, N. D. & Joyce, C. M. ( 1980; ). Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903. Proc Natl Acad Sci U S A 77, 7176–7180.[CrossRef]
    [Google Scholar]
  35. Hales, L. M. & Shuman, H. A. ( 1999; ). Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect Immun 67, 3662–3666.
    [Google Scholar]
  36. Hsia, K. C., Li, C. L. & Yuan, H. S. ( 2005; ). Structural and functional insight into sugar-nonspecific nucleases in host defense. Curr Opin Struct Biol 15, 126–134.[CrossRef]
    [Google Scholar]
  37. Hulst, M. M., Himes, G., Newbigin, E. & Moormann, R. J. ( 1994; ). Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology 200, 558–565.[CrossRef]
    [Google Scholar]
  38. Irie, M. & Ohgi, K. ( 2001; ). Ribonuclease T2. Methods Enzymol 341, 42–55.
    [Google Scholar]
  39. Johnson, T. L., Abendroth, J., Hol, W. G. & Sandkvist, M. ( 2006; ). Type II secretion: from structure to function. FEMS Microbiol Lett 255, 175–186.[CrossRef]
    [Google Scholar]
  40. Kar, S., Soong, L., Colmenares, M., Goldsmith-Pestana, K. & McMahon-Pratt, D. ( 2000; ). The immunologically protective P-4 antigen of Leishmania amastigotes. A developmentally regulated single strand-specific nuclease associated with the endoplasmic reticulum. J Biol Chem 275, 37789–37797.[CrossRef]
    [Google Scholar]
  41. Laguna, R. K., Creasey, E. A., Li, Z., Valtz, N. & Isberg, R. R. ( 2006; ). A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proc Natl Acad Sci U S A 103, 18745–18750.[CrossRef]
    [Google Scholar]
  42. Liles, M. R., Viswanathan, V. K. & Cianciotto, N. P. ( 1998; ). Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun 66, 1776–1782.
    [Google Scholar]
  43. Liles, M. R., Edelstein, P. H. & Cianciotto, N. P. ( 1999; ). The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol Microbiol 31, 959–970.[CrossRef]
    [Google Scholar]
  44. Liu, Y. & Luo, Z. Q. ( 2007; ). The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect Immun 75, 592–603.[CrossRef]
    [Google Scholar]
  45. Lucas, C. E., Brown, E. & Fields, B. S. ( 2006; ). Type IV pili and type II secretion play a limited role in Legionella pneumophila biofilm colonization and retention. Microbiology 152, 3569–3573.[CrossRef]
    [Google Scholar]
  46. MacIntosh, G. C., Bariola, P. A., Newbigin, E. & Green, P. J. ( 2001; ). Characterization of Rny1, the Saccharomyces cerevisiae member of the T2 RNase family of RNases: unexpected functions for ancient enzymes? Proc Natl Acad Sci U S A 98, 1018–1023.[CrossRef]
    [Google Scholar]
  47. Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., Hao, L., He, S., Hurwitz, D. I. & other authors ( 2007; ). CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35, D237–D240.[CrossRef]
    [Google Scholar]
  48. McGugan, G. C., Jr, Joshi, M. B. & Dwyer, D. M. ( 2007; ). Identification and biochemical characterization of unique secretory nucleases of the human enteric pathogen, Entamoeba histolytica. J Biol Chem 282, 31789–31802.[CrossRef]
    [Google Scholar]
  49. Messens, J., Collet, J. F., Van Belle, K., Brosens, E., Loris, R. & Wyns, L. ( 2007; ). The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem 282, 31302–31307.[CrossRef]
    [Google Scholar]
  50. Miroux, B. & Walker, J. E. ( 1996; ). Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260, 289–298.[CrossRef]
    [Google Scholar]
  51. Moffat, J. F., Edelstein, P. H., Regula, D. P., Jr, Cirillo, J. D. & Tompkins, L. S. ( 1994; ). Effects of an isogenic Zn-metalloprotease-deficient mutant of Legionella pneumophila in a guinea-pig pneumonia model. Mol Microbiol 12, 693–705.[CrossRef]
    [Google Scholar]
  52. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. ( 1997; ). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10, 1–6.[CrossRef]
    [Google Scholar]
  53. Ninio, S. & Roy, C. R. ( 2007; ). Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol 15, 372–380.[CrossRef]
    [Google Scholar]
  54. Padmanabhan, S., Zhou, K., Chu, C. Y., Lim, R. W. & Lim, L. W. ( 2001; ). Overexpression, biophysical characterization, and crystallization of ribonuclease I from Escherichia coli, a broad-specificity enzyme in the RNase T2 family. Arch Biochem Biophys 390, 42–50.[CrossRef]
    [Google Scholar]
  55. Peabody, C. R., Chung, Y. J., Yen, M. R., Vidal-Ingigliardi, D., Pugsley, A. P. & Saier, M. H., Jr ( 2003; ). Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051–3072.[CrossRef]
    [Google Scholar]
  56. Polesky, A. H., Ross, J. T., Falkow, S. & Tompkins, L. S. ( 2001; ). Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Infect Immun 69, 977–987.[CrossRef]
    [Google Scholar]
  57. Quinn, F. D. & Tompkins, L. S. ( 1989; ). Analysis of a cloned sequence of Legionella pneumophila encoding a 38 kD metalloprotease possessing haemolytic and cytotoxic activities. Mol Microbiol 3, 797–805.[CrossRef]
    [Google Scholar]
  58. Rechnitzer, C., Williams, A., Wright, J. B., Dowsett, A. B., Milman, N. & Fitzgeorge, R. B. ( 1992; ). Demonstration of the intracellular production of tissue-destructive protease by Legionella pneumophila multiplying within guinea-pig and human alveolar macrophages. J Gen Microbiol 138, 1671–1677.[CrossRef]
    [Google Scholar]
  59. Rossier, O. & Cianciotto, N. P. ( 2001; ). Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect Immun 69, 2092–2098.[CrossRef]
    [Google Scholar]
  60. Rossier, O., Starkenburg, S. & Cianciotto, N. P. ( 2004; ). Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect Immun 72, 310–321.[CrossRef]
    [Google Scholar]
  61. Rossier, O., Dao, J. & Cianciotto, N. P. ( 2008; ). The type II secretion system of Legionella pneumophila elaborates two aminopeptidases as well as a metalloprotease that contributes to differential infection among protozoan hosts. Appl Environ Microbiol 74, 753–761.[CrossRef]
    [Google Scholar]
  62. Saito, A., Rolfe, R. D., Edelstein, P. H. & Finegold, S. M. ( 1981; ). Comparison of liquid growth media for Legionella pneumophila. J Clin Microbiol 14, 623–627.
    [Google Scholar]
  63. Schneider, R., Unger, G., Stark, R., Schneider-Scherzer, E. & Thiel, H. J. ( 1993; ). Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 261, 1169–1171.[CrossRef]
    [Google Scholar]
  64. Schwartz, B., Shoseyov, O., Melnikova, V. O., McCarty, M., Leslie, M., Roiz, L., Smirnoff, P., Hu, G. F., Lev, D. & Bar-Eli, M. ( 2007; ). ACTIBIND, a T2 RNase, competes with angiogenin and inhibits human melanoma growth, angiogenesis, and metastasis. Cancer Res 67, 5258–5266.[CrossRef]
    [Google Scholar]
  65. Schweizer, H. P. & Hoang, T. T. ( 1995; ). An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158, 15–22.[CrossRef]
    [Google Scholar]
  66. Sevcik, J., Urbanikova, L., Leland, P. A. & Raines, R. T. ( 2002; ). X-ray structure of two crystalline forms of a streptomycete ribonuclease with cytotoxic activity. J Biol Chem 277, 47325–47330.[CrossRef]
    [Google Scholar]
  67. Shin, S. & Roy, C. R. ( 2008; ). Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 10, 1209–1220.[CrossRef]
    [Google Scholar]
  68. Söderberg, M. A. & Cianciotto, N. P. ( 2008; ). A Legionella pneumophila peptidyl-prolyl cis-trans isomerase present in culture supernatants is necessary for optimal growth at low temperatures. Appl Environ Microbiol 74, 1634–1638.[CrossRef]
    [Google Scholar]
  69. Söderberg, M. A., Rossier, O. & Cianciotto, N. P. ( 2004; ). The type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J Bacteriol 186, 3712–3720.[CrossRef]
    [Google Scholar]
  70. Söderberg, M. A., Dao, J., Starkenburg, S. & Cianciotto, N. P. ( 2008; ). The importance of type II secretion for Legionella pneumophila survival in tap water and amoebae at low temperature. Appl Environ Microbiol 74, 5583–5588.[CrossRef]
    [Google Scholar]
  71. Steinert, M., Heuner, K., Buchrieser, C., Albert-Weissenberger, C. & Glockner, G. ( 2007; ). Legionella pathogenicity: genome structure, regulatory networks and the host cell response. Int J Med Microbiol 297, 577–587.[CrossRef]
    [Google Scholar]
  72. Szeto, L. & Shuman, H. A. ( 1990; ). The Legionella pneumophila major secretory protein, a protease, is not required for intracellular growth or cell killing. Infect Immun 58, 2585–2592.
    [Google Scholar]
  73. Viswanathan, V. K., Kurtz, S., Pedersen, L. L., Abu-Kwaik, Y., Krcmarik, K., Mody, S. & Cianciotto, N. P. ( 2002; ). The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun 70, 1842–1852.[CrossRef]
    [Google Scholar]
  74. Yoshida, H. ( 2001; ). The ribonuclease T1 family. Methods Enzymol 341, 28–41.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023218-0
Loading
/content/journal/micro/10.1099/mic.0.023218-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error