1887

Abstract

The halotolerant acidophile ‘’ was shown to require chloride for growth. With ferrous iron as substrate, growth occurred at a rate similar to that of the well-studied acidophile . Previously, the salt (NaCl) requirement of ‘’ was not clear and its growth on ferrous iron was described as poor. A subtractive hybridization of cDNAs from ferrous-iron-grown and sulfur-grown ‘’ strain V6 led to identification of a cluster of genes similar to the operon reported to encode ferrous iron oxidation in . However, the ‘’ gene cluster did not contain a homologue of , which is thought to encode a key cytochrome in the pathway of electron transport from ferrous iron in . Rusticyanin, another key protein in ferrous iron oxidation by , was present in ‘’ at similar concentrations in cells grown on either ferrous iron or sulfur.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023192-0
2009-04-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1302.html?itemId=/content/journal/micro/10.1099/mic.0.023192-0&mimeType=html&fmt=ahah

References

  1. Alcaraz L. A., Jiménez B., Moratal J. M., Donaire A.. 2005; An NMR view of the unfolding process of rusticyanin: structural elements that maintain the architecture of a beta-barrel metalloprotein. Protein Sci14:1710–1722
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Jinghui Z., Zheng Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  3. Appia-Ayme C., Guiliani N., Ratouchniak J., Bonnefoy V.. 1999; Characterization of an operon encoding two c -type cytochromes, an aa 3-type cytochrome oxidase and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl Environ Microbiol65:4781–4787
    [Google Scholar]
  4. Auernik K. S., Maezato Y., Blum P. H., Kelly R. M.. 2008; The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol74:682–692
    [Google Scholar]
  5. Bathe S., Norris P. R.. 2007; Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus . Appl Environ Microbiol73:2491–2497
    [Google Scholar]
  6. Becker P., Hufnagle W., Peters G., Herrmann M.. 2001; Detection of differential gene expression in biofilm-forming versus planktonic populations of Staphylococcus aureus using micro-representational-difference analysis. Appl Environ Microbiol67:2958–2965
    [Google Scholar]
  7. Botuyan M. V., Toy-Palmer A., Chung J., Blake R. C. II, Beroza P., Case D. A., Dyson H. J.. 1996; NMR solution structure of Cu(I) rusticyanin from Thiobacillus ferrooxidans : structural basis for the extreme acid stability and redox potential. J Mol Biol263:752–767
    [Google Scholar]
  8. Brock T. D.. 1975; Effect of water potential on growth and iron oxidation by Thiobacillus ferrooxidans . Appl Microbiol29:495–501
    [Google Scholar]
  9. Cobley J. G., Haddock B. A.. 1975; The respiratory chain of Thiobacillus ferrooxidans : the reduction of cytochromes by Fe2+ and the preliminary characterization of rusticyanin a novel ‘blue’ copper protein. FEBS Lett60:29–33
    [Google Scholar]
  10. Cox J. C., Boxer D. H.. 1978; Purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferrooxidans . Biochem J174:497–502
    [Google Scholar]
  11. Davis-Belmar C. S., Nicolle J. L. C., Norris P. R.. 2008; Ferrous iron oxidation and leaching of copper with halotolerant bacteria in ore columns. Hydrometallurgy94:144–147
    [Google Scholar]
  12. Dopson M., Baker-Austin C., Bond P. L.. 2005; Analysis of differential protein expression during growth states of Ferroplasma strains and insights into electron transport for iron oxidation. Microbiology151:4127–4137
    [Google Scholar]
  13. Goebel B. M., Norris P. R., Burton N. P.. 2000; Acidophiles in biomining. In Applied Microbial Systematics pp293–314 Edited by Priest F. G., Goodfellow M.. Dordrecht: Kluwer;
  14. Huber H., Stetter K. O.. 1989; Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch Microbiol151:479–485
    [Google Scholar]
  15. Huber G., Huber H., Stetter K. O.. 1986; Isolation and characterization of new metal-mobilizing bacteria. In Workshop on Biotechnology for the Mining, Metal-Refining and Fossil Fuel Processing Industries (Biotechnology and Bioengineering Symposium No. 16) pp239–251 Edited by Ehrlich H. L., Holmes D. S. New York: Wiley;
  16. Kanbi L. D., Antonyuk S., Hough M. A., Hall J. F., Dodd F. E., Hasnain S. S.. 2002; Crystal structures of the met148leu and ser86asp mutants of rusticyanin from Thiobacillus ferrooxidans : insights into the structural relationship with the cupredoxins and the multi copper proteins. J Mol Biol320:263–275
    [Google Scholar]
  17. Kelly D. P., Wood A. P.. 2000; Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen.nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol50:511–516
    [Google Scholar]
  18. Meyer B., Imhoff J. F., Kuever J.. 2007; Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria – evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol9:2957–2977
    [Google Scholar]
  19. Norris P. R., Barr D. W.. 1985; Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiol Lett28:221–224
    [Google Scholar]
  20. Quatrini R., Appia-Ayme C., Denis Y., Ratouchniak J., Veloso F., Valdes J., Lefimil C., Silver S., Roberto F.. other authors 2006; Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy83:263–272
    [Google Scholar]
  21. Ramírez P., Guiliani N., Valenzuela L., Beard S., Jerez C. A.. 2004; Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol70:4491–4498
    [Google Scholar]
  22. Razzell W. E., Trussell P. C.. 1963; Isolation and properties of an iron-oxidizing Thiobacillus . J Bacteriol85:595–603
    [Google Scholar]
  23. Sasaki K., Ida C., Ando A., Matsumoto N., Saiki H., Ohmura N.. 2003; Respiratory isozyme, two types of rusticyanin of Acidithiobacillus ferrooxidans . Biosci Biotechnol Biochem67:1039–1047
    [Google Scholar]
  24. Schäfer K., Magnusson U., Scheffel F., Schiefner A., Sandgren M. O. J., Diederichs K., Weite W., Hülsmann A., Schneider E., Mowbray S. L.. 2004; X-ray structures of the maltose-maltodextrin-binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins. J Mol Biol335:261–274
    [Google Scholar]
  25. Schwermann B., Pfau K., Liliensiek B., Schleyer M., Fischer T., Bakker E. P.. 1994; Purification, properties and structural aspects of a thermoacidophilic α -amylase from Alicyclobacillus acidocaldarius ATCC 27009. Eur J Biochem226:981–991
    [Google Scholar]
  26. Simmons S., Norris P. R.. 2002; Acidophiles of saline water at thermal vents of Vulcano, Italy. Extremophiles6:201–207
    [Google Scholar]
  27. Tyson G. W., Chapman J., Hugenholtz P., Allen E. E., Ram R. J., Richardson P. M., Solovyev V. V., Rubin E. M., Rokhsar D. S., Banfield J. F.. 2004; Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature428:37–43
    [Google Scholar]
  28. Yarzábal A., Brasseur G., Bonnefoy V.. 2002; Cytochromes c of Acidithiobacillus ferrooxidans . FEMS Microbiol Lett209:189–195
    [Google Scholar]
  29. Yarzábal A., Appia-Ayme C., Ratouchniak J., Bonnefoy V.. 2004; Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c , a cytochrome oxidase and rusticyanin. Microbiology150:2113–2123
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023192-0
Loading
/content/journal/micro/10.1099/mic.0.023192-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error