1887

Abstract

In this contribution we resolve the long-standing dispute whether or not the Monod constant (K), describing the overall affinity of an organism for its growth-limiting substrate, can be related to the affinity of the transporter for that substrate (K). We show how this can be done via the control of the transporter on the specific growth rate; they are identical if the transport step has full control. The analysis leads to the counter-intuitive result that the affinity of an organism for its substrate is expected to be higher than the affinity of the enzyme that facilitates its transport. Experimentally, we show this indeed to be the case for the yeast , for which we determined a K value for glucose more than two times higher than the K value in glucose-limited chemostat cultures. Moreover, we calculated that at glucose concentrations of 0.03 and 0.29 mM, the transport step controls the specific growth rate at 78 and 49 %, respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023119-0
2009-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1699.html?itemId=/content/journal/micro/10.1099/mic.0.023119-0&mimeType=html&fmt=ahah

References

  1. Blackman F. F. 1905; Optima and limiting factors. Ann Bot (Lond 19:281–295
    [Google Scholar]
  2. Button D. K. 1993; Nutrient-limited microbial growth kinetics: overview and recent advances. Antonie Van Leeuwenhoek 63:225–235
    [Google Scholar]
  3. Contois D. E. 1959; Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous culture. J Gen Microbiol 21:40–50
    [Google Scholar]
  4. Daran-Lapujade P., Rossell S., van Gulik W. M., Luttik M. A. H., de Groot M. J. L., Slijper M., Heck A. J. R., Daran J.-M., de Winde J. H. other authors 2007; The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci U S A 104:15753–15758
    [Google Scholar]
  5. Fell D. A. 1992; Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286:313–330
    [Google Scholar]
  6. Fell D. 1996 Understanding the Control of Metabolism Portland Press;
  7. Heinrich R., Rapoport T. A. 1974; A linear steady-state treatment of enzymatic chains: general properties, control and effector strength. Eur J Biochem 42:89–95
    [Google Scholar]
  8. Heinrich R., Schuster S. 1996 The Regulation of Cellular Systems Chapman and Hall;
  9. Herbert D., Phipps P. J., Strange R. E. 1971; Chemical analysis of microbial cells. Methods Microbiol 5B:209–344
    [Google Scholar]
  10. Jannasch H. W., Egli T. 1993; Microbial growth kinetics: a historical perspective. Antonie Van Leeuwenhoek 63:213–224
    [Google Scholar]
  11. Kacser H., Burns J. A. 1973; The control of flux. Symp Soc Exp Biol 27:65–104
    [Google Scholar]
  12. Liu Y. 2007; Overview of some theoretical approaches for derivation of the Monod equation. Appl Microbiol Biotechnol 73:1241–1250
    [Google Scholar]
  13. Monod J. 1949; The growth of bacterial cultures. Annu Rev Microbiol 3:371–394
    [Google Scholar]
  14. Moser A. 1958 The Dynamics of Bacterial Populations Maintained in the Chemostat , Publication 614 Washington, DC: The Carnegie Institution;
    [Google Scholar]
  15. Olivier B. G., Snoep J. L. 2004; Web-based kinetic modelling using JWS Online. Bioinformatics 20:2143–2144
    [Google Scholar]
  16. Postma E., Scheffers W. A., Van Dijken J. P. 1989; Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces cerevisiae cbs 8066. Yeast 5:159–165
    [Google Scholar]
  17. Rohwer J. M., Meadow N. D., Roseman S., Westerhoff H. V., Postma P. W. 2000; Understanding glucose transport by the bacterial phospho-enolpyruvate : glucose phosphotransferase system on the basis of kinetic measurements in vitro . J Biol Chem 275:34909–34921
    [Google Scholar]
  18. Senn H., Lendenmann U., Snozzi M., Hamer G., Egli T. 1994; The growth of Escherichia coli in glucose-limited chemostat cultures: a reexamination of the kinetics. Biochim Biophys Acta 1201:424–436
    [Google Scholar]
  19. Small J. R. 1994; Design and analysis of chemostat experiments using Metabolic Control Analysis: a top-down approach. Microbiology 140:2439–2449
    [Google Scholar]
  20. Snoep J. L., Westerhoff H. V. 2005; From isolation to integration, a systems biology approach for building the silicon cell. In Systems Biology: Definitions and Perspectives Edited by Alberghina L., Westerhoff H. New York: Springer;
    [Google Scholar]
  21. Snoep J. L., Teixeira de Mattos M. J., Postma P. W., Neijssel O. M. 1990; Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. Arch Microbiol 154:50–55
    [Google Scholar]
  22. Snoep J. L., Jensen P. R., Groeneveld P., Molenaar D., Kholodenko B. N., Westerhoff H. V. 1994; How to determine control of growth rate in the chemostat, using metabolic control analysis to resolve the paradox. Biochem Mol Biol Int 33:1023–1032
    [Google Scholar]
  23. Stock J. B., Waygood E. B., Meadow N. D., Postman P. W., Roseman S. 1982; Sugar transport by the bacterial phosphotransferase system. J Biol Chem 257:14543–14552
    [Google Scholar]
  24. Teissier G. 1936; Les lois quantitatives de la croissance. Ann Physiol Physicochim Biol 12:527–573
    [Google Scholar]
  25. Teusink B., Passarge J., Reijenga C. A., Esgalhado E., Van der Weijden C. C., Schepper M., Walsh M. C., Bakker B. M., Van Dam K. other authors 2000; Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329
    [Google Scholar]
  26. Verduyn C., Postma E., Scheffers W. A., van Dijken J. P. 1992; Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517
    [Google Scholar]
  27. Walsh M. C., Smits H. P., Scholte M., van Dam K. 1994; Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. J Bacteriol 176:953–958
    [Google Scholar]
  28. Westerhoff H. V., Lolkema J. S., Otto R., Hellingwerf K. J. 1982; Thermodynamics of growth. Non-equilibrium thermodynamics of bacterial growth. The phenomenological and the mosaic approach. Biochim Biophys Acta 683:181–220
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023119-0
Loading
/content/journal/micro/10.1099/mic.0.023119-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error