Phagocytosis, germination and killing of spores presenting heterologous antigens in human macrophages Free

Abstract

is a Gram-positive spore-bearing bacterium long used as a probiotic product and more recently regarded as an attractive vehicle for delivering heterologous antigens to be used for mucosal vaccination. This report describes the interaction between human macrophages and spores displaying the tetanus toxin fragment C or the B subunit of the heat-labile toxin of on their surface in comparison to spores of the parental strain. Recombinant and parental spores were similarly internalized by human macrophages, at a frequency lower than 2.5 %. Inside macrophages, nearly all spores germinated and were killed within 6 h. Using germination-defective spores and inhibiting spore germination inside macrophages, evidence was produced that only germinated spores were killed by human macrophages and that intracellular spore germination was mediated by an alanine-dependent pathway. The germinated spores were killed by macrophages before any round of cell duplication, as estimated by fluorescence microscopy analysis of macrophages infected with spores carrying the gene fused to a gene shown here to be expressed at the transition between outgrowth and vegetative growth. Monitoring of macrophage infection never revealed cytotoxic effects being exerted by spores. These data support the hypothesis that spores may potentially be used as a suitable and safe vehicle for administering heterologous antigens to humans.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022939-0
2009-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/338.html?itemId=/content/journal/micro/10.1099/mic.0.022939-0&mimeType=html&fmt=ahah

References

  1. Aderem A., Underhill D. M. 1999; Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623
    [Google Scholar]
  2. Anmuth M., Harding J., Kravitz E., Stedman R. L. 1956; Autoinhibition of bacterial endospore germination. Science 124:403–405
    [Google Scholar]
  3. Cutting S., Vander Horn P. B. 1990; Genetic analysis. In Molecular Biological Methods for Bacillus pp 27–74 Edited by Harwood C. R., Cutting S. M. Chichester, UK: Wiley;
    [Google Scholar]
  4. Drevets D. A., Canono B. P., Leenen P. J., Campbell P. A. 1994; Gentamicin kills intracellular Listeria monocytogenes . Infect Immun 62:2222–2228
    [Google Scholar]
  5. Driks A. 1999; Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20
    [Google Scholar]
  6. Dunn A. K., Handelsman J. 1999; A vector for promoter trapping in Bacillus cereus . Gene 226:297–305
    [Google Scholar]
  7. Fujiya M., Musch M. W., Nakagawa Y., Shien H., Alverdy J., Kohogo Y., Schneewind O., Jabri B., Chang E. B. 2007; The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe 1:299–308
    [Google Scholar]
  8. Hills G. M. 1949; Chemical factors in the germination of spore-bearing aerobes; the effects of amino acids on the germination of Bacillus anthracis , with some observations on the relation of optical form to biological activity. Biochem J 45:363–370
    [Google Scholar]
  9. Hoa T. T., le Duc H., Isticato R., Baccigalupi L., Ricca E., Van P. H., Cutting S. M. 2001; Fate and dissemination of Bacillus subtilis spores in a murine model. Appl Environ Microbiol 67:3819–3823
    [Google Scholar]
  10. Hong H. A., le Duc H., Cutting S. M. 2005; The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835
    [Google Scholar]
  11. Hu H., Sa Q., Koehler T. M., Aronson A. I., Zhou D. 2006; Inactivation of Bacillus anthracis spores in murine primary macrophages. Cell Microbiol 8:1634–1642
    [Google Scholar]
  12. Isticato R., Cangiano G., Tran H. T., Ciabattini A., Medaglini D., Oggioni M. R., De Felice M., Pozzi G., Ricca E. 2001; Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol 183:6294–6301
    [Google Scholar]
  13. Keijser B. J. F., Ter Beek A., Rauwerda H., Schuren F., Montijn R., van der Spek H., Brul S. 2007; Analysis of temporal gene expression during Bacillus subtilis spore germination and outgrowth. J Bacteriol 189:3624–3634
    [Google Scholar]
  14. LeDeaux J. R., Grossman A. D. 1995; Isolation and characterization of kinC , a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis . J Bacteriol 177:166–175
    [Google Scholar]
  15. le Duc H., Hong H. A., Cutting S. M. 2003a; Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen presentation. Vaccine 21:4215–4224
    [Google Scholar]
  16. le Duc L. H., Hong H. A., Fairweather N., Ricca E., Cutting S. M. 2003b; Bacterial spores as vaccine vehicles. Infect Immun 71:2810–2818
    [Google Scholar]
  17. le Duc L. H., Hong H. A., Uyen N. Q., Cutting S. M. 2004; Intracellular fate and immunogenicity of B. subtilis spores. Vaccine 22:1873–1885
    [Google Scholar]
  18. le Duc L. H., Hong H. A., Atkins H. S., Flick-Smith H. C., Durrani Z., Rijpkema S., Titball R. W., Cutting S. M. 2007; Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25:346–355
    [Google Scholar]
  19. Mauriello E. M. F., le Duc H., Isticato R., Cangiano G., Hong H. A., De Felice M., Ricca E., Cutting S. M. 2004; Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22:1177–1187
    [Google Scholar]
  20. Mauriello E. M. F., Cangiano G., Maurano F., Saggese V., De Felice M., Rossi M., Ricca E. 2007; Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. Vaccine 25:788–793
    [Google Scholar]
  21. McKevitt M. T., Bryant K. M., Shakir S. M., Larabee J. L., Blanke S. R., Lovchik J., Lyons C. R., Ballard J. D. 2007; Effects of endogenous d-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections. Infect Immun 75:5726–5734
    [Google Scholar]
  22. Medzhitov R., Janeway C. 1997; Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298
    [Google Scholar]
  23. Moir A., Corfe B. M., Beharavan J. 2002; Spore germination. Cell Mol Life Sci 59:403–409
    [Google Scholar]
  24. Nicholson W. L., Setlow P. 1990; Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus pp 391–450 Edited by Harwood C. R., Cutting S. M. Chichester, UK: Wiley;
    [Google Scholar]
  25. Ohya S., Xiong H., Tanabe Y., Arakawa M., Mitsuyama M. 1998; Killing mechanism of Listeria monocytogenes in activated macrophages as determined by an improved assay system. J Med Microbiol 47:211–215
    [Google Scholar]
  26. O'Reilly M., Devine K. M. 1997; Expression of AbrB, a transition state regulator from Bacillus subtilis , is growth phase dependent in a manner resembling that of Fis, the nucleoid binding protein from Escherichia coli . J Bacteriol 179:522–529
    [Google Scholar]
  27. Powell J. F. 1950; Factors affecting the germination of thick suspensions of Bacillus subtilis spores in l-alanine solution. J Gen Microbiol 4:330–338
    [Google Scholar]
  28. Rajavelu P., Das S. D. 2007; A correlation between phagocytosis and apoptosis in THP-1 cells infected with prevalent strains of Mycobacterium tuberculosis . Microbiol Immunol 51:201–210
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  30. Senesi S., Felicioli A. R., Ipata P. L., Falcone G. 1975; Regulation of polyribonucleotide turnover in vegetative cells and spores of Bacillus subtilis . In Spores VI pp 265–270 Edited by Gerhardt P., Costilow R. N., Sadoff H. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Spinosa M. R., Braccini T., Ricca E., De Felice M., Morelli L., Pozzi G., Oggioni M. R. 2000; On the fate of ingested Bacillus spores. Res Microbiol 151:361–368
    [Google Scholar]
  32. Stokes R. W., Doxsee D. 1999; The receptor-mediated uptake, survival, replication, and drug sensitivity of Mycobacterium tuberculosis within the macrophage-like cell line THP-1: a comparison with human monocyte-derived macrophages. Cell Immunol 197:1–9
    [Google Scholar]
  33. Underhill D. M., Bassetti M., Rudensky A., Aderem A. 1999; Dynamic interactions of macrophages with T cells during antigen presentation. J Exp Med 190:1909–1914
    [Google Scholar]
  34. Williams P. 2007; Bacillus subtilis : a shocking message from a probiotic. Cell Host Microbe 1:248–249
    [Google Scholar]
  35. Youngman P., Perkins J. B., Losick R. 1984; A novel method for the rapid cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to Tn 917 insertion. Mol Gen Genet 195:424–433
    [Google Scholar]
  36. Zhou Z., Xia H., Hu X., Huang Y., Li Y., Li L., Ma C., Chen X., Hu F. other authors 2008; Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis . Vaccine 26:1817–1825
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022939-0
Loading
/content/journal/micro/10.1099/mic.0.022939-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed