1887

Abstract

Faecal bacteria from four human donors and six species of human intestinal bacteria known to metabolize linoleic acid (LA) were incubated with LA in deuterium oxide-enriched medium to investigate the mechanisms of conjugated linoleic acid (CLA) and vaccenic acid (VA) formation. The main CLA products in faecal suspensions, rumenic acid (9,11-CLA; RA) and 9,11-CLA, were labelled at C-13, as were other 9,11 geometric isomers. Traces of 10,12-CLA formed were labelled to a much lower extent. In pure culture, NCFB 2258 formed labelled RA and 9,11-CLA, while 16.4, A2-183, A2-192 and like strain A2-162 converted LA to VA, labelled in a manner indicating that VA was formed via C-13-labelled RA. subsp. DSM 4902, a possible probiotic, formed mainly RA with smaller amounts of 10,12-CLA and 9,11-CLA, labelled the same as in the mixed microbiota. Ricinoleic acid (12-OH-9-18 : 1) did not form CLA in the mixed microbiota, in contrast to CLA formation described for . These results were similar to those reported for the mixed microbiota of the rumen. Thus, although the bacterial genera and species responsible for biohydrogenation in the rumen and the human intestine differ, and a second route of RA formation via a 10-OH-18 : 1 is present in the intestine, the overall labelling patterns of different CLA isomers formation are common to both gut ecosystems. A hydrogen-abstraction enzymic mechanism is proposed that may explain the role of a 10-OH-18 : 1 intermediate in 9,11-CLA formation in pure and mixed cultures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022921-0
2009-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/285.html?itemId=/content/journal/micro/10.1099/mic.0.022921-0&mimeType=html&fmt=ahah

References

  1. Ando, A., Ogawa, J., Kishino, S. & Shimizu, S. ( 2003; ). CLA production from ricinoleic acid by lactic acid bacteria. J Am Oil Chem Soc 80, 889–894.[CrossRef]
    [Google Scholar]
  2. Barcenilla, A., Pryde, S. E., Martin, J. C., Duncan, S. H., Stewart, C. S., Henderson, C. & Flint, H. J. ( 2000; ). Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66, 1654–1661.[CrossRef]
    [Google Scholar]
  3. Bassaganya-Riera, J., Hontecillus, R. & Beitz, D. C. ( 2002; ). Colonic anti-inflammatory mechanisms of conjugated linoleic acid. Clin Nutr 21, 451–459.[CrossRef]
    [Google Scholar]
  4. Bassaganya-Riera, J., Reynolds, K., Martino-Catt, S., Cui, Y. Z., Hennighausen, L., Gonzalez, F., Rohrer, J., Benninghoff, A. U. & Hontecillas, R. ( 2004; ). Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127, 777–791.[CrossRef]
    [Google Scholar]
  5. Bauman, D. E., Lock, A. L., Corl, B. A., Ip, C., Salter, A. M. & Parodi, P. M. ( 2005; ). Milk fatty acids and human health: potential role of conjugated linoleic acid and trans fatty acids. In Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress, pp. 529–561. Edited by K. Serjrsen, T. Hvelplund & M. O. Nielsen. Wageningen, The Netherlands: Wageningen Academic Publishers.
  6. Campbell, I. M. ( 1974; ). Incorporation and dilution values – their calculation in mass spectrally stable isotope labeling experiments. Bioorg Chem 3, 386–397.[CrossRef]
    [Google Scholar]
  7. Chanoine, J. P., Hampl, S., Jensen, C., Boldrin, M. & Hauptman, J. ( 2005; ). Effect of orlistat on weight and body composition in obese adolescents – a randomized controlled trial. JAMA 293, 2873–2883.[CrossRef]
    [Google Scholar]
  8. Chin, S. F., Storkson, J. M., Albright, K. J. & Pariza, M. W. ( 1994; ). Conjugated linoleic acid (9,11-octadecadienoic and 10,12-octadecadienoic acid) is produced in conventional but not germ-free rats fed linoleic-acid. J Nutr 124, 694–701.
    [Google Scholar]
  9. Choi, N. J., Imm, J. Y., Oh, S., Kim, B. C., Hwang, H. J. & Kim, Y. J. ( 2005; ). Effect of pH and oxygen on conjugated linoleic acid (CLA) production by mixed rumen bacteria from cows fed high concentrate and high forage diets. Anim Feed Sci Technol 123–124, 643–653.
    [Google Scholar]
  10. Coakley, M., Ross, R. P., Nordgren, M., Fitzgerald, G., Devery, R. & Stanton, C. ( 2003; ). Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94, 138–145.[CrossRef]
    [Google Scholar]
  11. Coakley, M., Johnson, M. C., McGrath, E., Rahman, S., Ross, R. P., Fitzgerald, G. F., Devery, R. & Stanton, C. ( 2006; ). Intestinal bifidobacteria that produce trans-9,trans-11 conjugated linoleic acid: a fatty acid with antiproliferative activity against human colon SW480 and HT-29 cancer cells. Nutr Cancer 56, 95–102.[CrossRef]
    [Google Scholar]
  12. Devillard, E., McIntosh, F. M., Duncan, S. H. & Wallace, R. J. ( 2007; ). Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189, 2566–2570.[CrossRef]
    [Google Scholar]
  13. Duncan, S. H., Aminov, R. I., Scott, K. P., Louis, P., Stanton, T. B. & Flint, H. J. ( 2006; ). Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 56, 2437–2441.[CrossRef]
    [Google Scholar]
  14. Duncan, S. H., Louis, P. & Flint, H. J. ( 2007; ). Cultivable bacterial diversity from the human colon. Lett Appl Microbiol 44, 343–350.[CrossRef]
    [Google Scholar]
  15. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. & Relman, D. A. ( 2005; ). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.[CrossRef]
    [Google Scholar]
  16. Edwards, J. E., McEwan, N. R., Travis, A. J. & Wallace, R. J. ( 2004; ). 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie Van Leeuwenhoek 86, 263–281.[CrossRef]
    [Google Scholar]
  17. Ha, Y. L., Grimm, N. K. & Pariza, M. W. ( 1987; ). Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8, 1881–1887.[CrossRef]
    [Google Scholar]
  18. Harfoot, C. G. & Hazlewood, G. P. ( 1997; ). Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem, pp. 382–426. Edited by P. N. Hobson & C. S. Stewart. London: Chapman & Hall.
  19. Hauptman, J., Lucas, C., Boldrin, M. N., Collins, H. & Segal, K. R. ( 2000; ). Orlistat in the long-term treatment of obesity in primary care settings. Arch Fam Med 9, 160–167.[CrossRef]
    [Google Scholar]
  20. Herbert, D., Phipps, P. J. & Strange, R. E. ( 1971; ). Chemical analysis of microbial cells. Methods Microbiol 5B, 209–304.
    [Google Scholar]
  21. Hobson, P. N. ( 1969; ). Rumen bacteria. Methods Microbiol 3B, 133–139.
    [Google Scholar]
  22. Kamlage, B., Hartmann, L., Gruhl, B. & Blaut, M. ( 1999; ). Intestinal microorganisms do not supply associated gnotobiotic rats with conjugated linoleic acid. J Nutr 129, 2212–2217.
    [Google Scholar]
  23. Kamlage, B., Hartmann, L., Gruhl, B. & Blaut, M. ( 2000; ). Linoleic acid conjugation by human intestinal microorganisms is inhibited by glucose and other substrates in vitro and in gnotobiotic rats. J Nutr 130, 2036–2039.
    [Google Scholar]
  24. Kemp, M. Q., Jeffy, B. D. & Romagnolo, D. F. ( 2003; ). Conjugated linoleic acid inhibits cell proliferation through a p53-dependent mechanism: effects on the expression of G1-restriction points in breast and colon cancer cells. J Nutr 133, 3670–3677.
    [Google Scholar]
  25. Kepler, C. R., Tucker, W. P. & Tove, S. B. ( 1971; ). Biohydrogenation of unsaturated fatty acids. V. Stereospecificity of proton addition and mechanism of action of linoleic acid Δ12-cis11-trans-isomerase from Butyrivibrio fibrisolvens. J Biol Chem 246, 2765–2771.
    [Google Scholar]
  26. Kritchevsky, D. ( 2000; ). Antimutagenic and some other effects of conjugated linoleic acid. Br J Nutr 83, 459–465.
    [Google Scholar]
  27. Liavonchanka, A., Hornung, E., Feussner, I. & Rudolph, M. G. ( 2006; ). Structure and mechanism of the Propionibacterium acnes polyunsaturated fatty acid isomerase. Proc Natl Acad Sci U S A 103, 2576–2581.[CrossRef]
    [Google Scholar]
  28. Nichenametla, S. N., South, E. H. & Exon, J. H. ( 2004; ). Interaction of conjugated linoleic acid, sphingomyelin, and butyrate on formation of colonic aberrant crypt foci and immune function in rats. J. Toxicol Environ Health. Part A 67, 469–481.[CrossRef]
    [Google Scholar]
  29. Ogawa, J., Matsumura, K., Kishino, S., Omura, Y. & Shimizu, S. ( 2001; ). Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl Environ Microbiol 67, 1246–1252.[CrossRef]
    [Google Scholar]
  30. Ogawa, J., Kishino, S., Ando, A., Sugimoto, S., Mihara, K. & Shimizu, S. ( 2005; ). Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100, 355–364.[CrossRef]
    [Google Scholar]
  31. Pariza, M. W. ( 2004; ). Perspective on the safety and effectiveness of conjugated linoleic acid. Am J Clin Nutr 79, 1132S–1136S.
    [Google Scholar]
  32. Polan, C. E., McNeill, J. J. & Tove, S. B. ( 1964; ). Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol 88, 1056–1064.
    [Google Scholar]
  33. Rumney, C. J., Duncan, S. H., Henderson, C. & Stewart, C. S. ( 1995; ). Isolation and characteristics of a wheatbran-degrading Butyrivibrio from human faeces. Lett Appl Microbiol 20, 232–236.[CrossRef]
    [Google Scholar]
  34. Van Niel, C. B. ( 1928; ). The Propionic Acid Bacteria. Haarlem, The Netherlands: J. W. Boissevain.
  35. Wahle, K. W., Heys, S. D. & Rotondo, D. ( 2004; ). Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43, 553–587.[CrossRef]
    [Google Scholar]
  36. Wallace, R. J., Chaudhary, L. C., McKain, N., McEwan, N. R., Richardson, A. J., Vercoe, P. E., Walker, N. D. & Paillard, D. ( 2006; ). Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol Lett 265, 195–201.[CrossRef]
    [Google Scholar]
  37. Wallace, R. J., McKain, N., Shingfield, K. J. & Devillard, E. ( 2007; ). Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. J Lipid Res 48, 2247–2254.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022921-0
Loading
/content/journal/micro/10.1099/mic.0.022921-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error