Identification of iron-responsive proteins expressed by reticulate bodies during intracellular growth Free

Abstract

The obligate intracellular bacterium serovar E is the most prevalent cause of bacterial sexually transmitted disease. With an established requirement for iron, the developmental cycle arrests at the intracellular reticulate body stage during iron restriction, resulting in a phenomenon termed persistence. Persistence has implications in natural infections for altered expression of virulence factors and antigens, in addition to a potential role in producing chronic infection. In this study, chlamydial proteins in iron-restricted, infected HEC-1B cells were radiolabelled during mid-developmental cycle growth, harvested, and separated using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Of ∼250 radiolabelled protein species visualized, densitometric analysis revealed 25 proteins that increased in expression under iron restriction compared to iron-sufficient control samples; ten protein species identified by mass spectrometry are involved in the oxidative damage response (alkyl hydroperoxide reductase, 6-phosphogluconolactonase and acyl carrier protein synthase), transcription (RNA polymerase subunit alpha and transcription anti-termination factors NusA and NusG), protein modification (peptide deformylase and trigger factor), and virulence ( protein associating with death domains, CADD). Transcript-level expression patterns of , , , and were measured by quantitative RT-PCR throughout the developmental cycle, and each gene examined demonstrated a significant but small mid-cycle increase in transcript level in iron-restricted cultures compared to iron-replete controls. Taken together, these data suggest that the primary response of chlamydiae to reduced iron availability is to increase expression of proteins involved in protection against oxidative damage via iron-catalysed generation of reactive oxygen species and adaptation to stress by increasing expression of transcriptional machinery and other stress-responsive proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022731-0
2009-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/210.html?itemId=/content/journal/micro/10.1099/mic.0.022731-0&mimeType=html&fmt=ahah

References

  1. Al-Younes H. M., Rudel T., Brinkmann V., Szczepek A. J., Meyer T. F. 2001; Low iron availability modulates the course of Chlamydia pneumoniae infection. Cell Microbiol 3:427–437
    [Google Scholar]
  2. Anderson J. E., Leone P. A., Miller W. C., Chen C., Hobbs M. M., Sparling P. F. 2001; Selection for expression of the gonococcal hemoglobin receptor during menses. J Infect Dis 184:1621–1623
    [Google Scholar]
  3. Andrews N. C. 2000; Iron homeostasis: insights from genetics and animal models. Nat Rev Genet 1:208–217
    [Google Scholar]
  4. Archibald F. S. 1983; Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett 19:29–32
    [Google Scholar]
  5. Belland R. J., Zhong G., Crane D. D., Hogan D., Sturdevant D., Sharma J., Beatty W. L., Caldwell H. D. 2003a; Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis . Proc Natl Acad Sci U S A 100:8478–8483
    [Google Scholar]
  6. Belland R. J., Nelson D. E., Virok D., Crane D. D., Hogan D., Sturdevant D., Beatty W. L., Caldwell H. D. 2003b; Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc Natl Acad Sci U S A 100:15971–15976
    [Google Scholar]
  7. Byrne G. I., Ojcius D. M. 2004; Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol 2:802–808
    [Google Scholar]
  8. CDC 2007 Sexually Transmitted Disease Surveillance 2006 Supplement, Chlamydia Prevalence Monitoring Project Annual Report 2006 Atlanta, GA: Centers for Disease Control and Prevention;
    [Google Scholar]
  9. Cohen M. S., Britigan B. E., French M., Bean K. 1987; Preliminary observations on lactoferrin secretion in human vaginal mucus: variation during the menstrual cycle, evidence of hormonal regulation, and implications for infection with Neisseria gonorrhoeae . Am J Obstet Gynecol 157:1122–1125
    [Google Scholar]
  10. Deneer H. G., Healey V., Boychuk I. 1995; Reduction of exogenous ferric iron by a surface-associated ferric reductase of Listeria spp. Microbiology 141:1985–1992
    [Google Scholar]
  11. Freidank H. M., Billing H., Wiedmann-Al-Ahmad M. 2001; Influence of iron restriction on Chlamydia pneumoniae and C. trachomatis . J Med Microbiol 50:223–227
    [Google Scholar]
  12. Goellner S., Schubert E., Liebler-Tenorio E., Hotzel H., Saluz H. P., Sachse K. 2006; Transcriptional response patterns of Chlamydophila psittaci in different in vitro models of persistent infection. Infect Immun 74:4801–4808
    [Google Scholar]
  13. Gomes J. P., Hsia R. C., Mead S., Borrego M. J., Dean D. 2005; Immunoreactivity and differential developmental expression of known and putative Chlamydia trachomatis membrane proteins for biologically variant serovars representing distinct disease groups. Microbes Infect 7:410–420
    [Google Scholar]
  14. Guseva N. V., Dessus-Babus S., Moore C. G., Whittimore J. D., Wyrick P. B. 2007; Differences in Chlamydia trachomatis serovar E growth rate in polarized endometrial and endocervical epithelial cells grown in three-dimensional culture. Infect Immun 75:553–564
    [Google Scholar]
  15. Hantke K. 2001; Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177
    [Google Scholar]
  16. Heuer D., Lipinski A., Kirchner M., Meyer T. 2006; Transferrin receptor and Rab11 are crucial for efficient growth of C. trachomatis in epithelia cells. In Proceedings of the Eleventh International Symposium on Chlamydial Infections, Niagara-on-the-Lake Ontaria, Canada: pp 241–244 Edited by Chernesky M., Caldwell H., Christiansen G., Clarke I. N., Kaltenboek B., Knirsch C., Kuo C.-C., Mahony J, Rank R. G. others
    [Google Scholar]
  17. Hogan R. J., Mathews S. A., Mukhopadhyay S., Summersgill J. T., Timms P. 2004; Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72:1843–1855
    [Google Scholar]
  18. Holmes K., Mulholland F., Pearson B. M., Pin C., McNicholl-Kennedy J., Ketley J. M., Wells J. M. 2005; Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151:243–257
    [Google Scholar]
  19. Kadner R. J. 2005; Regulation by iron: RNA rules the rust. J Bacteriol 187:6870–6873
    [Google Scholar]
  20. Kelver M. E., Kaul A., Nowicki B., Findley W. E., Hutchens T. W., Nagamani M. 1996; Estrogen regulation of lactoferrin expression in human endometrium. Am J Reprod Immunol 36:243–247
    [Google Scholar]
  21. LaRue R. W., Dill B. D., Giles D. K., Whittimore J. D., Raulston J. E. 2007; Chlamydial Hsp60-2 is iron responsive in Chlamydia trachomatis serovar E-infected human endometrial epithelial cells in vitro. Infect Immun 75:2374–2380
    [Google Scholar]
  22. Lenco J., Hubalek M., Larsson P., Fucikova A., Brychta M., Macela A., Stulik J. 2007; Proteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC. FEMS Microbiol Lett 269:11–21
    [Google Scholar]
  23. Levenson C. W., Tassabehji N. M. 2004; Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev 3:251–263
    [Google Scholar]
  24. Litwin C. M., Calderwood S. B. 1993; Role of iron in regulation of virulence genes. Clin Microbiol Rev 6:137–149
    [Google Scholar]
  25. Lundberg B. E., Wolf R. E. Jr, Dinauer M. C., Xu Y., Fang F. C. 1999; Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect Immun 67:436–438
    [Google Scholar]
  26. Markel T. A., Crisostomo P. R., Wang M., Herring C. M., Meldrum K. K., Lillemoe K. D., Meldrum D. R. 2007; The struggle for iron: gastrointestinal microbes modulate the host immune response during infection. J Leukoc Biol 81:393–400
    [Google Scholar]
  27. Masse E., Arguin M. 2005; Ironing out the problem: new mechanisms of iron homeostasis. Trends Biochem Sci 30:462–468
    [Google Scholar]
  28. Merrell D. S., Thompson L. J., Kim C. C., Mitchell H., Tompkins L. S., Lee A., Falkow S. 2003; Growth phase-dependent response of Helicobacter pylori to iron starvation. Infect Immun 71:6510–6525
    [Google Scholar]
  29. Mukhopadhyay S., Miller R. D., Sullivan E. D., Theodoropoulos C., Mathews S. A., Timms P., Summersgill J. T. 2006; Protein expression profiles of Chlamydia pneumoniae in models of persistence versus those of heat shock stress response. Infect Immun 74:3853–3863
    [Google Scholar]
  30. Nunoshiba T., DeRojas-Walker T., Tannenbaum S. R., Demple B. 1995; Roles of nitric oxide in inducible resistance of Escherichia coli to activated murine macrophages. Infect Immun 63:794–798
    [Google Scholar]
  31. Oates P. S., Ahmed U. 2007; Molecular regulation of hepatic expression of iron regulatory hormone hepcidin. J Gastroenterol Hepatol 22:1378–1387
    [Google Scholar]
  32. Pandolfi P. P., Sonati F., Rivi R., Mason P., Grosveld F., Luzzatto L. 1995; Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 14:5209–5215
    [Google Scholar]
  33. Posey J. E., Gherardini F. C. 2000; Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–1653
    [Google Scholar]
  34. Rau A., Wyllie S., Whittimore J., Raulston J. E. 2005; Identification of Chlamydia trachomatis genomic sequences recognized by chlamydial divalent cation-dependent regulator A (DcrA. J Bacteriol 187:443–448
    [Google Scholar]
  35. Raulston J. E. 1997; Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect Immun 65:4539–4547
    [Google Scholar]
  36. Raulston J. E., Miller J. D., Davis C. H., Schell M., Baldwin A., Ferguson K., Lane H. 2007; Identification of an iron-responsive protein that is antigenic in patients with Chlamydia trachomatis genital infections. FEMS Immunol Med Microbiol 51:569–576
    [Google Scholar]
  37. Sritharan M., Asuthkar S., Sridhar V. 2006; Understanding iron acquisition by pathogenic leptospires: a review. Indian J Med Microbiol 24:311–316
    [Google Scholar]
  38. Stenner-Liewen F., Liewen H., Zapata J. M., Pawlowski K., Godzik A., Reed J. C. 2002; CADD, a Chlamydia protein that interacts with death receptors. J Biol Chem 277:9633–9636
    [Google Scholar]
  39. Stephens R. S., Kalman S., Lammel C., Fan J., Marathe R., Aravind L., Mitchell W., Olinger L., Tatusov R. L. other authors 1998; Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis . Science 282:754–759
    [Google Scholar]
  40. Taguchi F., Ogawa Y., Takeuchi K., Suzuki T., Toyoda K., Shiraishi T., Ichinose Y. 2006; A homologue of the 3-oxoacyl-(acyl carrier protein) synthase III gene located in the glycosylation island of Pseudomonas syringae pv. tabaci regulates virulence factors via N-acyl homoserine lactone and fatty acid synthesis. J Bacteriol 188:8376–8384
    [Google Scholar]
  41. Tai S. S., Zhu Y. Y. 1995; Cloning of a Corynebacterium diphtheriae iron-repressible gene that shares sequence homology with the AhpC subunit of alkyl hydroperoxide reductase of Salmonella typhimurium . J Bacteriol 177:3512–3517
    [Google Scholar]
  42. Tsaneva I. R., Weiss B. 1990; soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J Bacteriol 172:4197–4205
    [Google Scholar]
  43. Van Ho A., Ward D. M., Kaplan J. 2002; Transition metal transport in yeast. Annu Rev Microbiol 56:237–261
    [Google Scholar]
  44. van Vliet A. H., Wooldridge K. G., Ketley J. M. 1998; Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298
    [Google Scholar]
  45. Vandahl B. B., Birkelund S., Christiansen G. 2004; Genome and proteome analysis of Chlamydia . Proteomics 4:2831–2842
    [Google Scholar]
  46. Weinberg E. D. 1997; The Lactobacillus anomaly: total iron abstinence. Perspect Biol Med 40:578–583
    [Google Scholar]
  47. WHO 2001 Global Prevalence and Incidence of Selected Curable Sexually Transmitted Diseases: Overview and Estimates Geneva, Switzerland: World Health Organization;
    [Google Scholar]
  48. Wooldridge K. G., Williams P. H. 1993; Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12:325–348
    [Google Scholar]
  49. Wyllie S., Raulston J. E. 2001; Identifying regulators of transcription in an obligate intracellular pathogen: a metal-dependent repressor in Chlamydia trachomatis . Mol Microbiol 40:1027–1036
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022731-0
Loading
/content/journal/micro/10.1099/mic.0.022731-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed