1887

Abstract

Based on N-terminal sequences obtained from the purified cytoplasmic ferric reductases FerA and FerB, their corresponding genes were identified in the published genome sequence of Pd1222. The and genes were cloned and individually inactivated by insertion of a kanamycin resistance marker, and then returned to for exchange with their wild-type copies. The resulting and mutant strains showed normal growth in brain heart infusion broth. Unlike the mutant, the strain lacking FerA did not grow on succinate minimal medium with ferric 2,3-dihydroxybenzoate as the iron source, and grew only poorly in the presence of ferric sulfate, chloride, citrate, NTA, EDTA and EGTA. Moreover, the mutant strain was unable to produce catechols, which are normally detectable in supernatants from iron-limited wild-type cultures. Complementation of the mutation using a derivative of the conjugative broad-host-range plasmid pEG400 that contained the whole gene and its putative promoter region largely restored the wild-type phenotype. Partial, though significant, restoration could also be achieved with 1 mM chorismate added to the growth medium. The purified FerA protein acted as an NADH : FMN oxidoreductase and catalysed the FMN-mediated reductive release of iron from the ferric complex of parabactin, the major catecholate siderophore of . The deduced amino acid sequence of the FerA protein has closest similarity to flavin reductases that form part of the flavin-dependent two-component monooxygenases. Taken together, our results demonstrate an essential role of reduced flavins in the utilization of exogenous ferric iron. These flavins not only provide the electrons for Fe(III) reduction but most probably also affect the rate of siderophore production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022715-0
2009-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1294.html?itemId=/content/journal/micro/10.1099/mic.0.022715-0&mimeType=html&fmt=ahah

References

  1. Arnow, L. E. ( 1937; ). Colorimetric determination of the components of 3,4-dihydroxyphenylalaninetyrosine mixtures. J Biol Chem 118, 531–537.
    [Google Scholar]
  2. Baker, S. C., Ferguson, S. J., Ludwig, B., Page, M. D., Richter, O. M. & van Spanning, R. J. ( 1998; ). Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62, 1046–1078.
    [Google Scholar]
  3. Bergeron, R. J., Weimar, W. R. & Dionis, J. B. ( 1988; ). Demonstration of ferric l-parabactin-binding activity in the outer membrane of Paracoccus denitrificans. J Bacteriol 170, 3711–3717.
    [Google Scholar]
  4. Bohnke, R. & Matzanke, B. F. ( 1995; ). The mobile ferrous iron pool in Escherichia coli is bound to a phosphorylated sugar derivative. Biometals 8, 223–230.
    [Google Scholar]
  5. Boukhalfa, H. & Crumbliss, A. L. ( 2002; ). Chemical aspects of siderophore mediated iron transport. Biometals 15, 325–339.[CrossRef]
    [Google Scholar]
  6. Boyer, H. W. & Roulland-Dussoix, D. ( 1969; ). A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41, 459–472.[CrossRef]
    [Google Scholar]
  7. Coves, J. & Fontecave, M. ( 1993; ). Reduction and mobilization of iron by a NAD(P)H : flavin oxidoreductase from Escherichia coli. Eur J Biochem 211, 635–641.[CrossRef]
    [Google Scholar]
  8. Coves, J., Niviere, V., Eschenbrenner, M. & Fontecave, M. ( 1993; ). NADPH-sulfite reductase from Escherichia coli. J Biol Chem 268, 18604–18609.
    [Google Scholar]
  9. Dancis, A., Klausner, R. D., Hinnebusch, A. G. & Barriocanal, J. G. ( 1990; ). Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10, 2294–2301.
    [Google Scholar]
  10. de Gier, J. W. L., Lubben, M., Reijnders, W. N. M., Tipker, C. A., Slotboom, D. J., van Spanning, R. J. M., Stouthamer, A. H. & van der Oost, J. ( 1994; ). The terminal oxidases of Paracoccus denitrificans. Mol Microbiol 13, 183–196.[CrossRef]
    [Google Scholar]
  11. de Vries, G. E., Harms, N., Hoogendijk, J. & Stouthamer, A. H. ( 1989; ). Isolation and characterization of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property. Arch Microbiol 152, 52–57.[CrossRef]
    [Google Scholar]
  12. Georgatsou, E. & Alexandraki, D. ( 1994; ). Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 14, 3065–3073.
    [Google Scholar]
  13. Gerhus, E., Steinrucke, P. & Ludwig, B. ( 1990; ). Paracoccus denitrificans cytochrome c 1 gene replacement mutants. J Bacteriol 172, 2392–2400.
    [Google Scholar]
  14. Hawley, D. K. & McClure, W. R. ( 1983; ). Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11, 2237–2255.[CrossRef]
    [Google Scholar]
  15. Kessler, B., de Lorenzo, V. & Timmis, K. N. ( 1992; ). A general system to integrate lacZ fusions into the chromosomes of Gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet 233, 293–301.[CrossRef]
    [Google Scholar]
  16. Knaggs, A. R. ( 1999; ). The biosynthesis of shikimate metabolites. Nat Prod Rep 16, 525–560.[CrossRef]
    [Google Scholar]
  17. Lee, J.-W. & Helmann, J. D. ( 2007; ). Functional specialization within the Fur family of metalloregulators. Biometals 20, 485–499.[CrossRef]
    [Google Scholar]
  18. Macheroux, P., Schmidt, J., Amrhein, N. & Schiller, A. ( 1999; ). A unique reaction in a common pathway: mechanism and function of chorismate synthase in the shikimate pathway. Planta 207, 325–334.[CrossRef]
    [Google Scholar]
  19. Matzanke, B. F., Anemuller, S., Schunemann, V., Trautwein, A. X. & Hantke, K. ( 2004; ). FhuF, part of a siderophore-reductase system. Biochemistry 43, 1386–1392.[CrossRef]
    [Google Scholar]
  20. Mazoch, J., Tesařík, R., Sedláček, V., Kučera, I. & Turánek, J. ( 2004; ). Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur J Biochem 271, 553–562.[CrossRef]
    [Google Scholar]
  21. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics, pp. 352–354. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  22. Muller, K., Matzanke, B. F., Schünemann, V., Trautwein, A. X. & Hantke, K. ( 1998; ). FhuF, an iron-regulated protein of Escherichia coli with a new type of [2Fe–2S] center. Eur J Biochem 258, 1001–1008.[CrossRef]
    [Google Scholar]
  23. Neilands, J. B. ( 1983; ). Isolation and assay of 2,3-dihydroxybenzoyl derivatives of polyamines: the siderophores agrobactin and parabactin from Agrobacterium tumefaciens and Paracoccus denitrificans. Methods Enzymol 94, 437–441.
    [Google Scholar]
  24. Person, T. & Neilands, J. B. ( 1979; ). Revised structure of a catecholamide spermidine siderophore. Tetrahedron Lett 50, 4805–4808.
    [Google Scholar]
  25. Robinson, J. P. & McArdle, J. V. ( 1981; ). Electrochemistry of ferric complexes of parabactin and parabactin A. J Inorg Nucl Chem 43, 1951–1953.[CrossRef]
    [Google Scholar]
  26. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Schroder, I., Johnson, E. & de Vries, S. ( 2003; ). Microbial ferric iron reductases. FEMS Microbiol Rev 27, 427–447.[CrossRef]
    [Google Scholar]
  28. Tait, G. H. ( 1975; ). The identification and biosynthesis of siderochromes formed by Micrococcus denitrificans. Biochem J 146, 191–204.
    [Google Scholar]
  29. Uetz, T., Schneider, R., Snozzi, M. & Egli, T. ( 1992; ). Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from ‘Chelatobacter’ strain ATCC 29600. J Bacteriol 174, 1179–1188.
    [Google Scholar]
  30. van Spanning, R. J. M., de Boer, A. P. N., Slotboom, D. J., Reijnders, W. N. M. & Stouthamer, A. H. ( 1995; ). Isolation and characterization of a novel insertion sequence element, IS1248, in Paracoccus denitrificans. Plasmid 34, 11–21.[CrossRef]
    [Google Scholar]
  31. Warringer, J. & Blomberg, A. ( 2003; ). Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 20, 53–67.[CrossRef]
    [Google Scholar]
  32. Wee, S., Hardesty, S., Madiraju, M. V. V. S. & Wilkinson, B. J. ( 1988; ). Iron-regulated outer membrane proteins and non-siderophore-mediated iron acquisition by Paracoccus denitrificans. FEMS Microbiol Lett 51, 33–36.[CrossRef]
    [Google Scholar]
  33. Xu, Y., Mortimer, M. W., Fisher, T. S., Kahn, M. L., Brockman, F. J. & Xun, L. ( 1997; ). Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH : flavin mononucleotide oxidoreductase. J Bacteriol 179, 1112–1116.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022715-0
Loading
/content/journal/micro/10.1099/mic.0.022715-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1294-1301

Sequence comparison of FerA of with some homologous proteins identified by BLASTsearching. Identical amino acid residues are shaded black with white letters; highly conservative substitutions are shaded grey with white letters. The sequence of FerA (FerA ParDe) is derived from a wild-type strain (NCIB 8944); Q7CS24 AgrT5, hypothetical nitrilotriacetate monooxygenase from C58 (gi:15891656); Q3J370 RhoS4, component B of nitrilotriacetate monooxygenase from 2.4.1 (gi:77463161); NtaB CheHe, component B of nitrilotriacetate monooxygenase from ATCC 29600 (gi:2507085); SnaC StrPr, NADH:riboflavin 5′-phosphate oxidoreductase from (gi:1711412).



IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error