1887

Abstract

Bovicin HJ50 is a new lantibiotic containing a disulfide bridge produced by HJ50; its encoding gene was reported in our previous publication. To identify other genes involved in bovicin HJ50 production, DNA fragments flanking were cloned and sequenced. The bovicin HJ50 biosynthesis gene locus was encoded by a 9.9 kb region of chromosomal DNA and consisted of at least nine genes in the following order: , -, -, -, - ORF1, ORF2, and . A thiol–disulfide oxidoreductase gene named was located downstream of . A knockout mutant of this gene retained antimicrobial activity and the molecular mass of bovicin HJ50 in the mutant was the same as that of bovicin HJ50 in HJ50, implying that is not involved in bovicin HJ50 production. Transcriptional analyses showed that and constituted an operon, and the transcription start site of the promoter was located at a G residue 45 bp upstream of the translation start codon for , while through were transcribed together and the transcription start site of the promoter was located at a C residue 35 bp upstream of . We also demonstrated successful heterologous expression of bovicin HJ50 in MG1363, which lacks thiol–disulfide oxidoreductase genes; this showed that thiol–disulfide oxidoreductase genes other than are not essential for bovicin HJ50 biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022707-0
2009-02-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/584.html?itemId=/content/journal/micro/10.1099/mic.0.022707-0&mimeType=html&fmt=ahah

References

  1. Altena, K., Guder, A., Cramer, C. & Bierbaum, G. ( 2000; ). Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol 66, 2565–2571.[CrossRef]
    [Google Scholar]
  2. Buchan, A., Neidle, E. L. & Moran, M. A. ( 2004; ). Diverse organization of genes of the beta-ketoadipate pathway in members of the marine Roseobacter lineage. Appl Environ Microbiol 70, 1658–1668.[CrossRef]
    [Google Scholar]
  3. Chen, C., Tang, J., Dong, W., Wang, C., Feng, Y., Wang, J., Zheng, F., Pan, X., Liu, D. & other authors ( 2007; ). A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One 2, e315 [CrossRef]
    [Google Scholar]
  4. Chung, Y. J. & Hansen, J. N. ( 1992; ). Determination of the sequence of spaE and identification of a promoter in the subtilin (spa) operon in Bacillus subtilis. J Bacteriol 174, 6699–6702.
    [Google Scholar]
  5. Cintas, L. M., Rodriguez, J. M., Fernandez, M. F., Sletten, K., Nes, I. F., Hernandez, P. E. & Holo, H. ( 1995; ). Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol 61, 2643–2648.
    [Google Scholar]
  6. de Vos, W. M., Kuipers, O. P., van der Meer, J. R. & Siezen, R. J. ( 1995; ). Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Mol Microbiol 17, 427–437.[CrossRef]
    [Google Scholar]
  7. Dorenbos, R., Stein, T., Kabel, J., Bruand, C., Bolhuis, A., Bron, S., Quax, W. J. & Van Dijl, J. M. ( 2002; ). Thiol–disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J Biol Chem 277, 16682–16688.[CrossRef]
    [Google Scholar]
  8. Engelke, G., Gutowski-Eckel, Z., Hammelmann, M. & Entian, K. D. ( 1992; ). Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl Environ Microbiol 58, 3730–3743.
    [Google Scholar]
  9. Fisher, S. L., Jiang, W., Wanner, B. L. & Walsh, C. T. ( 1995; ). Cross-talk between the histidine protein kinase VanS and the response regulator PhoB. Characterization and identification of a VanS domain that inhibits activation of PhoB. J Biol Chem 270, 23143–23149.[CrossRef]
    [Google Scholar]
  10. Fons, M., Hege, T., Ladire, M., Raibaud, P., Ducluzeau, R. & Maguin, E. ( 1997; ). Isolation and characterization of a plasmid from Lactobacillus fermentum conferring erythromycin resistance. Plasmid 37, 199–203.[CrossRef]
    [Google Scholar]
  11. Heidrich, C., Pag, U., Josten, M., Metzger, J., Jack, R. W., Bierbaum, G., Jung, G. & Sahl, H. G. ( 1998; ). Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster. Appl Environ Microbiol 64, 3140–3146.
    [Google Scholar]
  12. Jung, G. ( 1991; ). Lantibiotics – ribosomally synthesized biologically active polypeptides containing sulfide bridges and α,β-didehydroamino acids. Angew Chem Int Ed Engl 30, 1151–1192.[CrossRef]
    [Google Scholar]
  13. Kleerebezem, M., Bongers, R., Rutten, G., de Vos, W. M. & Kuipers, O. P. ( 2004; ). Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Peptides 25, 1415–1424.[CrossRef]
    [Google Scholar]
  14. Klein, C., Kaletta, C. & Entian, K. D. ( 1993; ). Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol 59, 296–303.
    [Google Scholar]
  15. Koponen, O., Tolonen, M., Qiao, M., Wahlstrom, G., Helin, J. & Saris, P. E. ( 2002; ). NisB is required for the dehydration and NisC for the lanthionine formation in the post-translational modification of nisin. Microbiology 148, 3561–3568.
    [Google Scholar]
  16. Kouwen, T. R., van der Goot, A., Dorenbos, R., Winter, T., Antelmann, H., Plaisier, M. C., Quax, W. J., van Dijl, J. M. & Dubois, J. Y. ( 2007; ). Thiol–disulphide oxidoreductase modules in the low-GC Gram-positive bacteria. Mol Microbiol 64, 984–999.[CrossRef]
    [Google Scholar]
  17. Kuipers, O. P., Rollema, H. S., Yap, W. M., Boot, H. J., Siezen, R. J. & de Vos, W. M. ( 1992; ). Engineering dehydrated amino acid residues in the antimicrobial peptide nisin. J Biol Chem 267, 24340–24346.
    [Google Scholar]
  18. Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J. & De Vos, W. M. ( 1993; ). Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216, 281–291.[CrossRef]
    [Google Scholar]
  19. Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G., Luesink, E. J. & de Vos, W. M. ( 1995; ). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270, 27299–27304.[CrossRef]
    [Google Scholar]
  20. Kuipers, A., Wierenga, J., Rink, R., Kluskens, L. D., Driessen, A. J., Kuipers, O. P. & Moll, G. N. ( 2006; ). Sec-mediated transport of posttranslationally dehydrated peptides in Lactococcus lactis. Appl Environ Microbiol 72, 7626–7633.[CrossRef]
    [Google Scholar]
  21. Kupke, T. & Gotz, F. ( 1996; ). Post-translational modifications of lantibiotics. Antonie Van Leeuwenhoek 69, 139–150.[CrossRef]
    [Google Scholar]
  22. Lewington, J., Greenaway, S. D. & Spillan, B. J. ( 1987; ). Rapid small scale preparation of bacterial genomic DNA suitable for cloning and hybridization analysis. Lett Appl Microbiol 5, 51–53.[CrossRef]
    [Google Scholar]
  23. Li, B., Yu, J. P., Brunzelle, J. S., Moll, G. N., van der Donk, W. A. & Nair, S. K. ( 2006; ). Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311, 1464–1467.[CrossRef]
    [Google Scholar]
  24. Maniatis, T., Fritsch, E. F. & Sambrook, J. ( 1982; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. McLaughlin, R. E., Ferretti, J. J. & Hynes, W. L. ( 1999; ). Nucleotide sequence of the streptococcin A-FF22 lantibiotic regulon: model for production of the lantibiotic SA-FF22 by strains of Streptococcus pyogenes. FEMS Microbiol Lett 175, 171–177.[CrossRef]
    [Google Scholar]
  26. Myers, G. S., Rasko, D. A., Cheung, J. K., Ravel, J., Seshadri, R., DeBoy, R. T., Ren, Q., Varga, J., Awad, M. M. & other authors ( 2006; ). Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 16, 1031–1040.[CrossRef]
    [Google Scholar]
  27. Paik, S. H., Chakicherla, A. & Hansen, J. N. ( 1998; ). Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273, 23134–23142.[CrossRef]
    [Google Scholar]
  28. Peschel, A., Augustin, J., Kupke, T., Stevanovic, S. & Gotz, F. ( 1993; ). Regulation of epidermin biosynthetic genes by EpiQ. Mol Microbiol 9, 31–39.[CrossRef]
    [Google Scholar]
  29. Qi, F., Chen, P. & Caufield, P. W. ( 1999; ). Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl Environ Microbiol 65, 652–658.
    [Google Scholar]
  30. Sahl, H. G., Jack, R. W. & Bierbaum, G. ( 1995; ). Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230, 827–853.[CrossRef]
    [Google Scholar]
  31. Siezen, R. J., Kuipers, O. P. & de Vos, W. M. ( 1996; ). Comparison of lantibiotic gene clusters and encoded proteins. Antonie Van Leeuwenhoek 69, 171–184.[CrossRef]
    [Google Scholar]
  32. Takamatsu, D., Osaki, M. & Sekizaki, T. ( 2001a; ). Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid 46, 140–148.[CrossRef]
    [Google Scholar]
  33. Takamatsu, D., Osaki, M. & Sekizaki, T. ( 2001b; ). Construction and characterization of Streptococcus suisEscherichia coli shuttle cloning vectors. Plasmid 45, 101–113.[CrossRef]
    [Google Scholar]
  34. Twomey, D., Ross, R. P., Ryan, M., Meaney, B. & Hill, C. ( 2002; ). Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 82, 165–185.[CrossRef]
    [Google Scholar]
  35. Upton, M., Tagg, J. R., Wescombe, P. & Jenkinson, H. F. ( 2001; ). Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 183, 3931–3938.[CrossRef]
    [Google Scholar]
  36. van de Guchte, M., van der Vossen, J. M., Kok, J. & Venema, G. ( 1989; ). Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol 55, 224–228.
    [Google Scholar]
  37. van der Vossen, J. M., van der Lelie, D. & Venema, G. ( 1987; ). Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl Environ Microbiol 53, 2452–2457.
    [Google Scholar]
  38. van Kraaij, C., de Vos, W. M., Siezen, R. J. & Kuipers, O. P. ( 1999; ). Lantibiotics: biosynthesis, mode of action and applications. Nat Prod Rep 16, 575–587.[CrossRef]
    [Google Scholar]
  39. Wright, G. D., Holman, T. R. & Walsh, C. T. ( 1993; ). Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 32, 5057–5063.[CrossRef]
    [Google Scholar]
  40. Xiao, H., Chen, X., Chen, M., Tang, S., Zhao, X. & Huan, L. ( 2004; ). Bovicin HJ50, a novel lantibiotic produced by Streptococcus bovis HJ50. Microbiology 150, 103–108.[CrossRef]
    [Google Scholar]
  41. Yuan, J., Zhang, Z. Z., Chen, X. Z., Yang, W. & Huan, L. D. ( 2004; ). Site-directed mutagenesis of the hinge region of nisin Z and properties of nisin Z mutants. Appl Microbiol Biotechnol 64, 806–815.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022707-0
Loading
/content/journal/micro/10.1099/mic.0.022707-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error