1887

Abstract

Methionine residues and iron–sulphur (FeS) clusters are primary targets of reactive oxygen species in the proteins of micro-organisms. Here, we show that methionine redox modifications help to preserve essential FeS cluster activities in yeast. Mutants defective for the highly conserved methionine sulphoxide reductases (MSRs; which re-reduce oxidized methionines) are sensitive to many pro-oxidants, but here exhibited an unexpected copper resistance. This phenotype was mimicked by methionine sulphoxide supplementation. Microarray analyses highlighted several Cu and Fe homeostasis genes that were upregulated in the Δ double mutant, which lacks both of the yeast MSRs. Of the upregulated genes, the Cu-binding Fe transporter Fet3p proved to be required for the Cu-resistance phenotype. is known to be regulated by the Aft1 transcription factor, which responds to low mitochondrial FeS-cluster status. Here, constitutive Aft1p expression in the wild-type reproduced the Cu-resistance phenotype, and FeS-cluster functions were found to be defective in the Δ mutant. Genetic perturbation of FeS activity also mimicked -dependent Cu resistance. Fe-labelling studies showed that FeS clusters are turned over more rapidly in the Δ mutant than the wild-type, consistent with elevated oxidative targeting of the clusters in MSR-deficient cells. The potential underlying molecular mechanisms of this targeting are discussed. Moreover, the results indicate an important new role for cellular MSR enzymes in helping to protect the essential function of FeS clusters in aerobic settings.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022665-0
2009-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/612.html?itemId=/content/journal/micro/10.1099/mic.0.022665-0&mimeType=html&fmt=ahah

References

  1. Alamuri, P. & Maier, R. J. ( 2006; ). Methionine sulfoxide reductase in Helicobacter pylori: interaction with methionine-rich proteins and stress-induced expression. J Bacteriol 188, 5839–5850.[CrossRef]
    [Google Scholar]
  2. Amberg, D. C., Burke, D. J. & Strathern, J. N. ( 2005; ). Methods in Yeast Genetics. A Cold Spring Harbor Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  3. Askwith, C. & Kaplan, J. ( 1998; ). Iron and copper transport in yeast and its relevance to human disease. Trends Biochem Sci 23, 135–138.[CrossRef]
    [Google Scholar]
  4. Atamna, H., Walter, P. B. & Ames, B. N. ( 2002; ). The role of heme and iron–sulfur clusters in mitochondrial biogenesis, maintenance, and decay with age. Arch Biochem Biophys 397, 345–353.[CrossRef]
    [Google Scholar]
  5. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G. & Struhl, K. ( 2007; ). Current Protocols in Molecular Biology. New York: John Wiley and Sons.
  6. Avery, S. V. ( 2001; ). Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49, 111–142.
    [Google Scholar]
  7. Avery, S. V., Howlett, N. G. & Radice, S. ( 1996; ). Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microbiol 62, 3960–3966.
    [Google Scholar]
  8. Avery, A. M., Willetts, S. A. & Avery, S. V. ( 2004; ). Genetic dissection of the phospholipid hydroperoxidase activity of yeast Gpx3 reveals its functional importance. J Biol Chem 279, 46652–46658.[CrossRef]
    [Google Scholar]
  9. Bigelow, D. J. & Squier, T. C. ( 2005; ). Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim Biophys Acta 1703, 121–134.[CrossRef]
    [Google Scholar]
  10. Bishop, A. L., Rab, F. A., Sumner, E. R. & Avery, S. V. ( 2007; ). Phenotypic heterogeneity can enhance rare-cell survival in ‘stress-sensitive’ yeast populations. Mol Microbiol 63, 507–520.[CrossRef]
    [Google Scholar]
  11. Boiteux, S. & Radicella, J. P. ( 1999; ). Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie 81, 59–67.[CrossRef]
    [Google Scholar]
  12. Bradford, M. M. ( 1976; ). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  13. Cashikar, A. G., Duennwald, M. & Lindquist, S. L. ( 2005; ). A chaperone pathway in protein disaggregation – Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280, 23869–23875.[CrossRef]
    [Google Scholar]
  14. Chen, O. S. & Kaplan, J. ( 2000; ). CCC1 suppresses mitochondrial damage in the yeast model of Friedreich's ataxia by limiting mitochondrial iron accumulation. J Biol Chem 275, 7626–7632.[CrossRef]
    [Google Scholar]
  15. Chen, O. S., Crisp, R. J., Valachovic, M., Bard, M., Winge, D. R. & Kaplan, J. ( 2004; ). Transcription of the yeast iron regulon does not respond directly to iron but rather to iron–sulfur cluster biosynthesis. J Biol Chem 279, 29513–29518.[CrossRef]
    [Google Scholar]
  16. Ciorba, M. A., Heinemann, S. H., Weissbach, H., Brot, N. & Hoshi, T. ( 1997; ). Modulation of potassium channel function by methionine oxidation and reduction. Proc Natl Acad Sci U S A 94, 9932–9937.[CrossRef]
    [Google Scholar]
  17. Courel, M., Lallet, S., Camadro, J. M. & Blaiseau, P. L. ( 2005; ). Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Mol Cell Biol 25, 6760–6771.[CrossRef]
    [Google Scholar]
  18. Delaye, L., Becerra, A., Orgel, L. & Lazcano, A. ( 2007; ). Molecular evolution of peptide methionine sulfoxide reductases (MsrA and MsrB): on the early development of a mechanism that protects against oxidative damage. J Mol Evol 64, 15–32.[CrossRef]
    [Google Scholar]
  19. Ezraty, B., Grimaud, R., El Hassouni, M., Moinier, D. & Barras, F. ( 2004; ). Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. EMBO J 23, 1868–1877.[CrossRef]
    [Google Scholar]
  20. Gietz, R. D. & Woods, R. A. ( 2002; ). Transformation of yeast by the lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350, 87–96.
    [Google Scholar]
  21. Hausmann, A., Samans, B., Lill, R. & Mühlenhoff, U. ( 2008; ). Cellular and mitochondrial remodeling upon defects in iron–sulfur protein biogenesis. J Biol Chem 283, 8318–8330.[CrossRef]
    [Google Scholar]
  22. Hughes, M. N. & Poole, R. K. ( 1991; ). Metal speciation and microbial growth – the hard (and soft) facts. J Gen Microbiol 137, 725–734.[CrossRef]
    [Google Scholar]
  23. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. & O'Shea, E. K. ( 2003; ). Global analysis of protein localization in budding yeast. Nature 425, 686–691.[CrossRef]
    [Google Scholar]
  24. Imlay, J. A. ( 2006; ). Iron–sulphur clusters and the problem with oxygen. Mol Microbiol 59, 1073–1082.[CrossRef]
    [Google Scholar]
  25. Irazusta, V., Cabiscol, E., Reverter-Branchat, G., Ros, J. & Tamarit, J. ( 2006; ). Manganese is the link between frataxin and iron–sulfur deficiency in the yeast model of Friedreich ataxia. J Biol Chem 281, 12227–12232.[CrossRef]
    [Google Scholar]
  26. Janke, C., Magiera, M. M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E. & other authors ( 2004; ). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962.[CrossRef]
    [Google Scholar]
  27. Jarrett, J. T. ( 2005; ). The novel structure and chemistry of iron–sulfur clusters in the adenosylmethionine-dependent radical enzyme biotin synthase. Arch Biochem Biophys 433, 312–321.[CrossRef]
    [Google Scholar]
  28. Jo, W. J., Loguinov, A., Chang, M., Wintz, H., Nislow, C., Arkin, A. P., Giaever, G. & Vulpe, C. D. ( 2008; ). Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants. Toxicol Sci 101, 140–151.
    [Google Scholar]
  29. Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. ( 2005; ). Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74, 247–281.[CrossRef]
    [Google Scholar]
  30. Keyer, K. & Imlay, J. A. ( 1996; ). Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A 93, 13635–13640.[CrossRef]
    [Google Scholar]
  31. Kim, H. Y. & Gladyshev, V. N. ( 2004; ). Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol Biol Cell 15, 1055–1064.
    [Google Scholar]
  32. Knight, S. A. B., Labbe, S., Kwon, L. F., Kosman, D. J. & Thiele, D. J. ( 1996; ). A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10, 1917–1929.[CrossRef]
    [Google Scholar]
  33. Koc, A., Gasch, A. P., Rutherford, J. C., Kim, H. Y. & Gladyshev, V. N. ( 2004; ). Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proc Natl Acad Sci U S A 101, 7999–8004.[CrossRef]
    [Google Scholar]
  34. Kohlhaw, G. B. ( 1988; ). Isopropylmalate dehydratase from yeast. Methods Enzymol 166, 423–429.
    [Google Scholar]
  35. Kryukov, G. V., Kumar, R. A., Koc, A., Sun, Z. H. & Gladyshev, V. N. ( 2002; ). Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99, 4245–4250.[CrossRef]
    [Google Scholar]
  36. Kumanovics, A., Chen, O. S., Li, L. T., Adkins, E. M., Lin, H., Dingra, N. N., Outten, C. E., Keller, G., Winge, D. & other authors ( 2008; ). Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron–sulfur cluster synthesis. J Biol Chem 283, 10276–10286.[CrossRef]
    [Google Scholar]
  37. Kumar, A., Agarwal, S., Heyman, J. A., Matson, S., Heidtman, M., Piccirillo, S., Umansky, L., Drawid, A., Jansen, R. & other authors ( 2002; ). Subcellular localization of the yeast proteome. Genes Dev 16, 707–719.[CrossRef]
    [Google Scholar]
  38. Le, D. T., Liang, X. W., Fomenko, D. E., Raza, A. S., Chong, C. K., Carlson, B. A., Hatfield, D. L. & Gladyshev, V. N. ( 2008; ). Analysis of methionine/selenomethionine oxidation and methionine sulfoxide reductase function using methionine-rich proteins and antibodies against their oxidized forms. Biochemistry 47, 6685–6694.[CrossRef]
    [Google Scholar]
  39. Levine, R. L., Mosoni, L., Berlett, B. S. & Stadtman, E. R. ( 1996; ). Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93, 15036–15040.[CrossRef]
    [Google Scholar]
  40. Li, L. T. & Kaplan, J. ( 2004; ). A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism. J Biol Chem 279, 33653–33661.[CrossRef]
    [Google Scholar]
  41. Lill, R. & Kispal, G. ( 2000; ). Maturation of cellular Fe–S proteins: an essential function of mitochondria. Trends Biochem Sci 25, 352–356.[CrossRef]
    [Google Scholar]
  42. Lin, C. M. & Kosman, D. J. ( 1990; ). Copper uptake in wild type and copper metallothionein-deficient Saccharomyces cerevisiae – kinetics and mechanism. J Biol Chem 265, 9194–9200.
    [Google Scholar]
  43. Longtine, M. S., McKenzie, A., Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P. & Pringle, J. R. ( 1998; ). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961.[CrossRef]
    [Google Scholar]
  44. Melkani, G. C., Kestetter, J., Sielaff, R., Zardeneta, G. & Mendoza, J. A. ( 2006; ). Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide. Biochem Biophys Res Commun 347, 534–539.[CrossRef]
    [Google Scholar]
  45. Molik, S., Lill, R. & Mühlenhoff, U. ( 2007; ). Methods for studying iron metabolism in yeast mitochondria. Methods Cell Biol 80, 261–280.
    [Google Scholar]
  46. Moskovitz, J. ( 2005; ). Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta 1703, 213–219.[CrossRef]
    [Google Scholar]
  47. Moskovitz, J., Berlett, B. S., Poston, J. M. & Stadtman, E. R. ( 1997; ). The yeast peptide methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci U S A 94, 9585–9589.[CrossRef]
    [Google Scholar]
  48. Moskovitz, J., Flescher, E., Berlett, B. S., Azare, J., Poston, J. M. & Stadtman, E. R. ( 1998; ). Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci U S A 95, 14071–14075.[CrossRef]
    [Google Scholar]
  49. Moskovitz, J., Bar-Noy, S., Williams, W. M., Berlett, B. S. & Stadtman, E. R. ( 2001; ). Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A 98, 12920–12925.[CrossRef]
    [Google Scholar]
  50. Mühlenhoff, U., Gerl, M. J., Flauger, B., Pirner, H. M., Balser, S., Richhardt, N., Lill, R. & Stolz, J. ( 2007; ). The iron–sulfur cluster proteins Isa1 and Isa2 are required for the function but not for the de novo synthesis of the Fe/S clusters of biotin synthase in Saccharomyces cerevisiae. Eukaryot Cell 6, 495–504.[CrossRef]
    [Google Scholar]
  51. Oien, D. & Moskovitz, J. ( 2007; ). Protein-carbonyl accumulation in the non-replicative senescence of the methionine sulfoxide reductase A (msrA) knockout yeast strain. Amino Acids 32, 603–606.[CrossRef]
    [Google Scholar]
  52. Oien, D. B. & Moskovitz, J. ( 2008; ). Substrates of the methionine sulfoxide reductase system and their physiological relevance. Curr Top Dev Biol 80, 93–133.
    [Google Scholar]
  53. Payne, T., Hanfrey, C., Bishop, A. L., Michael, A. J., Avery, S. V. & Archer, D. B. ( 2008; ). Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae. FEBS Lett 582, 503–509.[CrossRef]
    [Google Scholar]
  54. Pogocki, D. ( 2003; ). Alzheimer's β-amyloid peptide as a source of neurotoxic free radicals: the role of structural effects. Acta Neurobiol Exp (Wars) 63, 131–145.
    [Google Scholar]
  55. Portnoy, M. E., Schmidt, P. J., Rogers, R. S. & Culotta, V. C. ( 2001; ). Metal transporters that contribute copper to metallochaperones in Saccharomyces cerevisiae. Mol Genet Genomics 265, 873–882.[CrossRef]
    [Google Scholar]
  56. Puig, S., Lee, J., Lau, M. & Thiele, D. J. ( 2002; ). Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277, 26021–26030.[CrossRef]
    [Google Scholar]
  57. Puig, S., Askeland, E. & Thiele, D. J. ( 2005; ). Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120, 99–110.[CrossRef]
    [Google Scholar]
  58. Ramirez, D. C., Mejiba, S. E. G. & Mason, R. P. ( 2005; ). Copper-catalyzed protein oxidation and its modulation by carbon dioxide – enhancement of protein radicals in cells. J Biol Chem 280, 27402–27411.[CrossRef]
    [Google Scholar]
  59. Rutherford, J. C., Jaron, S. & Winge, D. R. ( 2003; ). Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements. J Biol Chem 278, 27636–27643.[CrossRef]
    [Google Scholar]
  60. Rutherford, J. C., Ojeda, L., Balk, J., Mühlenhoff, U., Lill, R. & Winge, D. R. ( 2005; ). Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron–sulfur protein biogenesis. J Biol Chem 280, 10135–10140.[CrossRef]
    [Google Scholar]
  61. Sanz, A., Caro, P., Ayala, V., Portero-Otin, M., Pamplona, R. & Barja, G. ( 2006; ). Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 20, 1064–1073.[CrossRef]
    [Google Scholar]
  62. Schoneich, C. ( 2005; ). Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer's disease. Biochim Biophys Acta 1703, 111–119.[CrossRef]
    [Google Scholar]
  63. Shan, Y. X., Napoli, E. & Cortopassi, G. ( 2007; ). Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones. Hum Mol Genet 16, 929–941.[CrossRef]
    [Google Scholar]
  64. Small, I., Peeters, N., Legeai, F. & Lurin, C. ( 2004; ). Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4, 1581–1590.[CrossRef]
    [Google Scholar]
  65. Smith, M. C. A., Sumner, E. R. & Avery, S. V. ( 2007; ). Glutathione and Gts1p drive beneficial variability in the cadmium resistances of individual yeast cells. Mol Microbiol 66, 699–712.[CrossRef]
    [Google Scholar]
  66. Srinivasan, C., Liba, A., Imlay, J. A., Valentine, J. S. & Gralla, E. B. ( 2000; ). Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance. J Biol Chem 275, 29187–29192.[CrossRef]
    [Google Scholar]
  67. Stoj, C. S., Augustine, A. J., Solomon, E. I. & Kosman, D. J. ( 2007; ). Structure–function analysis of the cuprous oxidase activity in Fet3p from Saccharomyces cerevisiae. J Biol Chem 282, 7862–7868.[CrossRef]
    [Google Scholar]
  68. Strain, J., Lorenz, C. R., Bode, J., Garland, S., Smolen, G. A., Tall, D. T., Vickery, L. E. & Culotta, V. C. ( 1998; ). Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae – identification of proteins predicted to mediate iron–sulfur cluster assembly. J Biol Chem 273, 31138–31144.[CrossRef]
    [Google Scholar]
  69. Sumner, E. R., Shanmuganathan, A., Sideri, T. C., Willetts, S. A., Houghton, J. E. & Avery, S. V. ( 2005; ). Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151, 1939–1948.[CrossRef]
    [Google Scholar]
  70. Sun, H. Y., Gao, J., Ferrington, D. A., Biesiada, H., Williams, T. D. & Squier, T. C. ( 1999; ). Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Biochemistry 38, 105–112.[CrossRef]
    [Google Scholar]
  71. Temple, M. D., Perrone, G. G. & Dawes, I. W. ( 2005; ). Complex cellular responses to reactive oxygen species. Trends Cell Biol 15, 319–326.[CrossRef]
    [Google Scholar]
  72. Wallace, M. A., Bailey, S., Fukuto, J. M., Valentine, J. S. & Gralla, E. B. ( 2005; ). Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds. Chem Res Toxicol 18, 1279–1286.[CrossRef]
    [Google Scholar]
  73. Wassef, R., Haenold, R., Hansel, A., Brot, N., Heinemann, S. H. & Hoshi, T. ( 2007; ). Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson's-like symptoms. J Neurosci 27, 12808–12816.[CrossRef]
    [Google Scholar]
  74. Waters, B. M. & Eide, D. J. ( 2002; ). Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. J Biol Chem 277, 33749–33757.[CrossRef]
    [Google Scholar]
  75. Wingert, R. A., Galloway, J. L., Barut, B., Foott, H., Fraenkel, P., Axe, J. L., Weber, G. J., Dooley, K., Davidson, A. J. & other authors ( 2005; ). Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature 436, 1035–1039.[CrossRef]
    [Google Scholar]
  76. Yamaguchi-Iwai, Y., Dancis, A. & Klausner, R. D. ( 1995; ). AFT1 – a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14, 1231–1239.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022665-0
Loading
/content/journal/micro/10.1099/mic.0.022665-0
Loading

Data & Media loading...

Supplements

[PDF file](20 KB)

PDF

[PDF file](424 KB)

PDF

[PDF file](11 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error