Cyclopropane fatty acyl synthase in Free

Abstract

Cyclopropane fatty acyl synthases (CFA synthases) are enzymes that catalyse the addition of a methylene group across double bonds of monounsaturated fatty acyl chains in lipids. We have investigated the function of two putative genes, and proposed to code for CFA synthases in . Total fatty acid composition and fatty acid distributions within lipid classes for wild-type and and mutant strains grown under P starvation and in acidic culture conditions were obtained by GC/MS and by infusion ESI/MS/MS, respectively. For wild-type cells and the mutant, total cyclopropane fatty acids (CFAs) increased by 10 % and 15 % under P starvation and acidic conditions, respectively; whereas in the mutant, CFAs were less than 0.1 % of wild-type under both growth conditions. Reporter gene fusion experiments revealed that and were expressed at similar levels in free-living cells. Thus under the conditions we examined, was required for the cyclopropanation of lipids in whereas the role of remains to be determined. Analysis of intact lipids revealed that cyclopropanation occurred on -11-octadecenoic acid located in either the -1 or the -2 position in phospholipids and that cyclopropanation in the -2 position occurred to a greater extent in phosphatidylcholines and sulfoquinovosyldiacylglycerols under acidic conditions than under P starvation. The gene was also required for cyclopropanation of non-phosphorus-containing lipids. Principal components analysis revealed no differences in the cyclopropanation of four lipid classes. We concluded that cyclopropanation occurred independently of the polar head group. Neither nor was required for symbiotic nitrogen fixation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022608-0
2009-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/373.html?itemId=/content/journal/micro/10.1099/mic.0.022608-0&mimeType=html&fmt=ahah

References

  1. Ayyadurai N., Naik P. R., Sakthivel N. 2007; Functional characterization of antagonistic fluorescent pseudomonads associated with rhizospheric soil of rice ( Oryza sativa L.). J Microbiol Biotechnol 17:919–927
    [Google Scholar]
  2. Ballen K. G., Graham P. H., Jones R. K., Bowers J. H. 1998; Acidity and calcium interaction affecting cell envelope stability in Rhizobium . Can J Microbiol 44:582–587
    [Google Scholar]
  3. Bardin S., Dan S., Osteras M., Finan T. M. 1996; A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti . J Bacteriol 178:4540–4547
    [Google Scholar]
  4. Bhatt A., Molle V., Besra G. S., Jacobs W. R., Kremer L. 2007; The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol Microbiol 64:1442–1454
    [Google Scholar]
  5. Boumahdi M., Mary P., Hornez J. P. 2001; Changes in fatty acid composition and degree of unsaturation of (brady)rhizobia as a response to phases of growth, reduced water activities and mild desiccation. Antonie Van Leeuwenhoek 79:73–79
    [Google Scholar]
  6. Brown J. L., Ross T., McMeekin T. A., Nichols P. D. 1997; Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37:163–173
    [Google Scholar]
  7. Budin-Verneuil A., Maguin E., Auffray Y., Ehrlich S. D., Pichereau V. 2005; Transcriptional analysis of the cyclopropane fatty acid synthase gene of Lactococcus lactis MG1363 at low pH. FEMS Microbiol Lett 250:189–194
    [Google Scholar]
  8. Chang Y. Y., Cronan J. E. 1999; Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli . Mol Microbiol 33:249–259
    [Google Scholar]
  9. Cheng Y., Waktin E. L. J., Howieson J. G., O'Hara G. W. 2005; Root and root hair mechanisms that confer symbiotic competence for nodulation in acidic soils within Medicago species: a holistic model. Aust J Exp Agric 45:231–240
    [Google Scholar]
  10. Correa O. S., Rivas E. A., Barneix A. J. 1999; Cellular envelopes and tolerance to acid pH in Mesorhizobium loti . Curr Microbiol 38:329–334
    [Google Scholar]
  11. Courtois F., Ploux O. 2005; Escherichia coli cyclopropane fatty acid synthase: is a bound bicarbonate ion the active-site base?. Biochemistry 44:13583–13590
    [Google Scholar]
  12. Courtois F., Guerard C., Thomas X., Ploux O. 2004; Escherichia coli cyclopropane fatty acid synthase. Eur J Biochem 271:4769–4778
    [Google Scholar]
  13. Cowie A., Cheng J. J., Sibley C. D., Fong Y., Zaheer R., Patten C. L., Morton R. M., Golding G. B., Finan T. M. 2006; An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti . Appl Environ Microbiol 72:7156–7167
    [Google Scholar]
  14. Cronan J. E. 2002; Phospholipid modifications in bacteria. Curr Opin Microbiol 5:202–205
    [Google Scholar]
  15. Fang J. S., Lyon D. Y., Wiesner M. R., Dong J. P., Alvarez P. J. J. 2007; Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642
    [Google Scholar]
  16. Finan T. M., Kunkel B., Devos G. F., Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72
    [Google Scholar]
  17. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A. other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti . Science 293:668–672
    [Google Scholar]
  18. Garau G., Reeve W. G., Brau L., Deiana P., Yates R. J., James D., Tiwari R., O'Hara G. W., Howieson J. G. 2005; The symbiotic requirements of different Medicago spp. suggest the evolution of Sinorhizobium meliloti and S. medicae with hosts differentially adapted to soil pH. Plant Soil 276:263–277
    [Google Scholar]
  19. Garg N., Geetanjali. 2007; Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27:59–68
    [Google Scholar]
  20. Geiger O., Rohrs V., Weissenmayer B., Finan T. M., Thomas-Oates J. E. 1999; The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N , N , N -trimethylhomoserine in Rhizobium ( Sinorhizobium ) meliloti . Mol Microbiol 32:63–73
    [Google Scholar]
  21. Glickman M. S., Cox J. S., Jacobs W. R. 2000; A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis . Mol Cell 5:717–727
    [Google Scholar]
  22. Griffiths W. J. 2003; Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom Rev 22:81–152
    [Google Scholar]
  23. Grogan D. W., Cronan J. E. 1997; Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441
    [Google Scholar]
  24. Guianvarc'h D., Drujon T., Leang T. E., Courtois F., Ploux O. 2006; Identification of new inhibitors of E. coli cyclopropane fatty acid synthase using a colorimetric assay. Biochim Biophys Acta 17641381–1388
    [Google Scholar]
  25. Han X. L., Gross R. W. 2003; Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44:1071–1079
    [Google Scholar]
  26. Han X. L., Gross R. W. 2005a; Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412
    [Google Scholar]
  27. Han X. L., Gross R. W. 2005b; Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteomics 2:253–264
    [Google Scholar]
  28. Hsu F. F., Turk J. 2000; Characterization of phosphatidylethanolamine as a lithiated adduct by triple quadrupole tandem mass spectrometry with electrospray ionization. J Mass Spectrom 35:595–606
    [Google Scholar]
  29. Hsu F. F., Turk J. 2001; Studies on phosphatidylglycerol with triple quadrupole tandem mass spectrometry with electrospray ionization: fragmentation processes and structural characterization. J Am Soc Mass Spectrom 12:1036–1043
    [Google Scholar]
  30. Hsu F. F., Turk J. 2003; Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes. J Am Soc Mass Spectrom 14:352–363
    [Google Scholar]
  31. Hsu F. F., Bohrer A., Turk J. 1998; Formation of lithiated adducts of glycerophosphocholine lipids facilitates their identification by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 9:516–526
    [Google Scholar]
  32. Huang C. C., Smith C. V., Glickman M. S., Jacobs W. R., Sacchettini J. C. 2002; Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis . J Biol Chem 277:11559–11569
    [Google Scholar]
  33. Ibragimova M. V., Rumyantseva M. L., Onishchuk O. P., Belova V. S., Kurchak O. N., Andronov E. E., Dzyubenko N. I., Simarov B. V. 2006; Symbiosis between the root-nodule bacterium Sinorhizobium meliloti and alfalfa ( Medicago sativa ) under salinization conditions. Microbiology 75:77–81
    [Google Scholar]
  34. Ingrosso D., Fowler A. V., Bleibaum J., Clarke S. 1989; Sequence of the d-aspartyl l-isoaspartyl protein methyltransferase from human-erythrocytes – common sequence motifs for protein, DNA, RNA, and small molecule S -adenosylmethionine-dependent methyltransferases. J Biol Chem 264:20131–20139
    [Google Scholar]
  35. Jarvis B. D. W., Tighe S. W. 1994; Rapid identification of Rhizobium species based on cellular fatty-acid analysis. Plant Soil 161:31–41
    [Google Scholar]
  36. Kim B. H., Kim S., Kim H. G., Lee J., Lee I. S., Park Y. K. 2005; The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. Microbiology 151:209–218
    [Google Scholar]
  37. Loffhagen N., Hartig C., Geyer W., Voyevoda M., Harms H. 2007; Competition between cis , trans and cyclopropane fatty acid formation and its impact on membrane fluidity. Eng Life Sci 7:67–74
    [Google Scholar]
  38. Lopez-Lara I. M., Gao J. L., Soto M. J., Solares-Perez A., Weissenmayer B., Sohlenkamp C., Verroios G. P., Thomas-Oates J., Geiger O. 2005; Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. Mol Plant Microbe Interact 18:973–982
    [Google Scholar]
  39. MacLean A. M., Finan T. M., Sadowsky M. J. 2007; Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–622
    [Google Scholar]
  40. Mrozik A., Labuzek S., Piotrowska-Seget Z. 2005; Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation. Microbiol Res 160:149–157
    [Google Scholar]
  41. Mrozik A., Piotrowska-Seget Z., Labuzek S. 2006; Cellular fatty acid patterns in Pseudomonas sp. CF600 during catechol and phenol degradation in media supplemented with glucose as an additional carbon source. Ann Microbiol 56:57–64
    [Google Scholar]
  42. Munoz-Rojas J., Bernal P., Duque E., Godoy P., Segura A., Ramos J. L. 2006; Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Appl Environ Microbiol 72:472–477
    [Google Scholar]
  43. Rao V., Fujiwara N., Porcelli S. A., Glickman M. S. 2005; Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201:535–543
    [Google Scholar]
  44. Rosenthal A. Z., Kim Y., Gralla J. D. 2008; Regulation of transcription by acetate in Escherichia coli : in vivo and in vitro comparisons. Mol Microbiol 68:907–917
    [Google Scholar]
  45. Saborido Basconcillo L., McCarry B. E. 2008; Comparison of three GC/MS methodologies for the analysis of fatty acids in Sinorhizobium meliloti : development of a micro-scale, one-vial method. J Chromatogr B Analyt Technol Biomed Life Sci 871:22–31
    [Google Scholar]
  46. Sekanka G., Baird M., Minnikin D., Grooten J. 2007; Mycolic acids for the control of tuberculosis. Expert Opin Ther Patents 17:315–331
    [Google Scholar]
  47. Wang A. Y., Grogan D. W., Cronan J. E. Jr 1992; Cyclopropane fatty-acid synthase of Escherichia coli : deduced amino-acid-sequence, purification, and studies of the enzyme active-site. Biochemistry 31:11020–11028
    [Google Scholar]
  48. Weidner S., Puhler A., Kuster H. 2003; Genomics insights into symbiotic nitrogen fixation. Curr Opin Biotechnol 14:200–205
    [Google Scholar]
  49. Yuan Z. C., Zaheer R., Finan T. M. 2006a; Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti . J Bacteriol 188:1089–1102
    [Google Scholar]
  50. Yuan Z. C., Zaheer R., Morton R., Finan T. M. 2006b; Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res 34:2686–2697
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022608-0
Loading
/content/journal/micro/10.1099/mic.0.022608-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed