1887

Abstract

The conserved , , locus in encodes respectively a Ser/Thr phosphatase, the cognate sensor kinase (containing an external PASTA domain suggested to bind peptidoglycan precursors) and CpgA, a small ribosome-associated GTPase that we have shown previously is implicated in shape determination and peptidoglycan deposition. In this study, in a search for targets of PrkC and PrpC, we showed that, , CpgA itself is phosphorylated on serine and threonine, and another GTPase, the translation factor EF-Tu, is also phosphorylated by the kinase on the conserved T384 residue. Both substrates are dephosphorylated by PrpC . In addition, we identified YezB, a 10.3 kDa polypeptide, and a component of the stressosome, as a substrate for both enzymes and apparently . We propose that the PrpC/PrkC/CpgA system constitutes an important element of a regulatory network involved in the coordination of cell wall expansion and growth in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022475-0
2009-03-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/932.html?itemId=/content/journal/micro/10.1099/mic.0.022475-0&mimeType=html&fmt=ahah

References

  1. Absalon C., Hamze K., Blanot D., Frehel C., Carballido-Lopez R., Holland B. I., van Heijenoort J., Seror S. J. 2008; The GTPase, CpgA is implicated in the deposition of the peptidoglycan sacculus in B. subtilis . J Bacteriol 190:3786–3790
    [Google Scholar]
  2. Akbar S., Gaidenko T. A., Kang C. M., O'Reilly M., Devine K. M., Price C. W. 2001; New family of regulators in the environmental signaling pathway which activates the general stress transcription factor σ B of Bacillus subtilis . J Bacteriol 183:1329–1338
    [Google Scholar]
  3. Alexander C., Bilgin N., Lindschau C., Mesters J. R., Kraal B., Hilgenfeld R., Erdmann V. A., Lippmann C. 1995; Phosphorylation of elongation factor Tu prevents ternary complex formation. J Biol Chem 270:14541–14547
    [Google Scholar]
  4. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol 81:741–746
    [Google Scholar]
  5. Antelmann H., Engelmann S., Schmid R., Sorokin A., Lapidus A., Hecker M. 1997; Expression of a stress- and starvation-induced dps/ pexB-homologous gene is controlled by the alternative sigma factor σ B in Bacillus subtilis . J Bacteriol 179:7251–7256
    [Google Scholar]
  6. Archambaud C., Gouin E., Pizarro-Cerda J., Cossart P., Dussurget O. 2005; Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes . Mol Microbiol 56:383–396
    [Google Scholar]
  7. Canova M. J., Veyron-Churlet R., Zanella-Cleon I., Cohen-Gonsaud M., Cozzone A. J., Becchi M., Kremer L., Molle V. 2008; The Mycobacterium tuberculosis serine/threonine kinase PknL phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c. Proteomics 8:521–533
    [Google Scholar]
  8. Cladière L., Hamze K., Madec E., Levdikov V. M., Wilkinson A. J., Holland I. B., Séror S. J. 2006; The GTPase, CpgA(YloQ), a putative translation factor, is implicated in morphogenesis in Bacillus subtilis . Mol Genet Genomics 275:409–420
    [Google Scholar]
  9. Crameri A., Whitehorn E. A., Tate E., Stemmer W. P. 1996; Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319
    [Google Scholar]
  10. Dasgupta A., Datta P., Kundu M., Basu J. 2006; The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152:493–504
    [Google Scholar]
  11. Eymann C., Dreisbach A., Albrecht D., Bernhardt J., Becher D., Gentner S., Tam le T., Büttner K., Buurman G. other authors 2004; A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4:2849–2876
    [Google Scholar]
  12. Eymann C., Becher D., Bernhardt J., Gronau K., Klutzny A., Hecker M. 2007; Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis . Proteomics 7:3509–3526
    [Google Scholar]
  13. Fernandez P., Saint-Joanis B., Barilone N., Jackson M., Gicquel B., Cole S. T., Alzari P. M. 2006; The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J Bacteriol 188:7778–7784
    [Google Scholar]
  14. Gaidenko T. A., Kim T.-J., Price C. W. 2002; The PrpC serine-threonine phosphatase and PrkC kinase have opposing physiological roles in stationary-phase Bacillus subtilis cells. J Bacteriol 184:6109–6114
    [Google Scholar]
  15. Good M. C., Greenstein A. E., Young T. A., Ng H. L., Alber T. 2004; Sensor domain of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknD, forms a highly symmetric beta propeller. J Mol Biol 339:459–469
    [Google Scholar]
  16. Greenstein A. E., Echols N., Lombana T. N., King D. S., Alber T. 2007; Allosteric activation by dimerization of the PknD receptor Ser/Thr protein kinase from Mycobacterium tuberculosis . J Biol Chem 282:11427–11435
    [Google Scholar]
  17. Grundner C., Gay L. M., Alber T. 2005; Mycobacterium tuberculosis serine/threonine kinases PknB, PknD, PknE, and PknF phosphorylate multiple FHA domains. Protein Sci 14:1918–1921
    [Google Scholar]
  18. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  19. Hecker M., Pané-Farré J., Völker U. 2007; SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61:215–236
    [Google Scholar]
  20. Hubler L., Kher U., Bertics P. J. 1992; Potentiation of epidermal growth factor receptor protein-tyrosine kinase activity by sulfate. Biochim Biophys Acta 1133:307–315
    [Google Scholar]
  21. Huse M., Kuriyan J. 2002; The conformational plasticity of protein kinases. Cell 109:275–282
    [Google Scholar]
  22. Iwanicki A., Hinc K., Seror S., Wegrzyn G., Obuchowski M. 2005; Transcription in the prpC-yloQ region in Bacillus subtilis . Arch Microbiol 183:421–430
    [Google Scholar]
  23. Jin H., Pancholi V. 2006; Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in Streptococcus pyogenes: their biological functions and substrate identification. J Mol Biol 357:1351–1372
    [Google Scholar]
  24. Jones G., Dyson P. 2006; Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. J Bacteriol 188:7470–7476
    [Google Scholar]
  25. Kang C.-M., Abbott D. W., Park S. T., Dascher C. C., Cantley L. C., Husson R. N. 2005; The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19:1692–1704
    [Google Scholar]
  26. Kang C. M., Nyayapathy S., Lee J. Y., Suh J. W., Husson R. N. 2008; Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154:725–735
    [Google Scholar]
  27. Kristich C. J., Wells C. L., Dunny G. M. 2007; A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proc Natl Acad Sci U S A 104:3508–3513
    [Google Scholar]
  28. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis . Nature 390:249–256
    [Google Scholar]
  29. Lee P. C., Umeyama T., Horinouchi S. 2002; afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2. Mol Microbiol 43:1413–1430
    [Google Scholar]
  30. Levdikov V. M., Blagova E. V., Brannigan J. A., Cladière L., Antson A. A., Isupov M. N., Séror S. J., Wilkinson A. J. 2004; The crystal structure of YloQ, a circularly permuted GTPase essential for Bacillus subtilis viability. J Mol Biol 340:767–782
    [Google Scholar]
  31. Lévine A., Vannier F., Absalon C., Kuhn L., Jackson P., Scrivener E., Labas V., Vinh J., Courtney P. other authors 2006; Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes. Proteomics 6:2157–2173
    [Google Scholar]
  32. Lippmann C., Lindschau C., Vijgenboom E., Schröder W., Bosch L., Erdmann V. A. 1993; Prokaryotic elongation factor Tu is phosphorylated in vivo . J Biol Chem 268:601–607
    [Google Scholar]
  33. Macek B., Mijakovic I., Olsen J. V., Gnad F., Kumar C., Jensen P. R., Mann M. 2007; The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis . Mol Cell Proteomics 6:697–707
    [Google Scholar]
  34. Madec E., Laszkiewicz A., Iwanicki A., Obuchowski M., Séror S. 2002; Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, implicated in developmental processes. Mol Microbiol 46:571–586
    [Google Scholar]
  35. Madec E., Stensballe A., Kjellström S., Cladière L., Obuchowski M., Jensen O. N., Séror S. J. 2003; Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis . J Mol Biol 330:459–472
    [Google Scholar]
  36. Mijakovic I., Poncet S., Boel G., Mazé A., Gillet S., Jamet E., Decottignies P., Grangeasse C., Doublet P. other authors 2003; Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. EMBO J 22:4709–4718
    [Google Scholar]
  37. Mijakovic I., Petranovic D., Deutscher J. 2004; How tyrosine phosphorylation affects the UDP-glucose dehydrogenase activity of Bacillus subtilis YwqF. J Mol Microbiol Biotechnol 8:19–25
    [Google Scholar]
  38. Mijakovic I., Petranovic D., Macek B., Cepo T., Mann M., Davies J., Jensen P. R., Vujaklija D. 2006; Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34:1588–1596
    [Google Scholar]
  39. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Molle V., Girard-Blanc C., Kremer L., Doublet P., Cozzone A. J., Prost J.-F. 2003a; Protein PknE, a novel transmembrane eukaryotic-like serine/threonine kinase from Mycobacterium tuberculosis . Biochem Biophys Res Commun 308:820–825
    [Google Scholar]
  41. Molle V., Kremer L., Girard-Blanc C., Besra G. S., Cozzone A. J., Prost J.-F. 2003b; An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis . Biochemistry 42:15300–15309
    [Google Scholar]
  42. Molle V., Soulat D., Jault J. M., Grangeasse C., Cozzone A. J., Prost J. F. 2004; Two FHA domains on an ABC transporter, Rv1747, mediate its phosphorylation by PknF, a Ser/Thr protein kinase from Mycobacterium tuberculosis . FEMS Microbiol Lett 234:215–223
    [Google Scholar]
  43. Nariya H., Inouye S. 2005; Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development. Mol Microbiol 58:367–379
    [Google Scholar]
  44. Nariya H., Inouye S. 2006; A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 60:1205–1217
    [Google Scholar]
  45. Novakova L., Saskova L., Pallova P., Janecek J., Novotna J., Ulrych A., Echenique J., Trombe M. C., Branny P. 2005; Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. FEBS J 272:1243–1254
    [Google Scholar]
  46. Obuchowski M., Madec E., Delattre D., Boël G., Iwanicki A., Foulger D., Séror S. J. 2000; Characterization of PrpC from Bacillus subtilis, a member of the PPM phosphatase family. J Bacteriol 182:5634–5638
    [Google Scholar]
  47. Pane-Farre J., Lewis R. J., Stulke J. 2005; The RsbRST stress module in bacteria: a signalling system that may interact with different output modules. J Mol Microbiol Biotechnol 9:65–76
    [Google Scholar]
  48. Pérez J., Garcia R., Bach H., de Waard J. H., Jacobs W. R., Av-Gay Y., Bubis J., Takiff H. E. 2006; Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD. Biochem Biophys Res Commun 348:6–12
    [Google Scholar]
  49. Rajagopal L., Vo A., Silvestroni A., Rubens C. E. 2005; Regulation of purine biosynthesis by a eukaryotic-type kinase in Streptococcus agalactiae . Mol Microbiol 56:1329–1346
    [Google Scholar]
  50. Saskova L., Novakova L., Basler M., Branny P. 2007; Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae . J Bacteriol 189:4168–4179
    [Google Scholar]
  51. Shah I. M., Laaberki M. H., Popham D. L., Dworkin J. K. 2008; A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135:486–496
    [Google Scholar]
  52. Sharma K., Gupta M., Krupa A., Srinivasan N., Singh Y. 2006; EmbR, a regulatory protein with ATPase activity, is a substrate of multiple serine/threonine kinases and phosphatase in Mycobacterium tuberculosis . FEBS J 273:2711–2721
    [Google Scholar]
  53. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130
    [Google Scholar]
  54. Thakur M., Chakraborti P. K. 2006; GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase. PknA. J Biol Chem 281:40107–40113
    [Google Scholar]
  55. Yang X., Kang C. M., Brody M. S., Price C. W. 1996; Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev 10:2265–2275
    [Google Scholar]
  56. Yeats C., Finn R. D., Bateman A. 2002; The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci 27:438
    [Google Scholar]
  57. Young T. A., Delagoutte B., Endrizzi J. A., Falick A. M., Alber T. 2003; Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Biol 10:168–174
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022475-0
Loading
/content/journal/micro/10.1099/mic.0.022475-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error