1887

Abstract

The conserved , , locus in encodes respectively a Ser/Thr phosphatase, the cognate sensor kinase (containing an external PASTA domain suggested to bind peptidoglycan precursors) and CpgA, a small ribosome-associated GTPase that we have shown previously is implicated in shape determination and peptidoglycan deposition. In this study, in a search for targets of PrkC and PrpC, we showed that, , CpgA itself is phosphorylated on serine and threonine, and another GTPase, the translation factor EF-Tu, is also phosphorylated by the kinase on the conserved T384 residue. Both substrates are dephosphorylated by PrpC . In addition, we identified YezB, a 10.3 kDa polypeptide, and a component of the stressosome, as a substrate for both enzymes and apparently . We propose that the PrpC/PrkC/CpgA system constitutes an important element of a regulatory network involved in the coordination of cell wall expansion and growth in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022475-0
2009-03-01
2019-08-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/932.html?itemId=/content/journal/micro/10.1099/mic.0.022475-0&mimeType=html&fmt=ahah

References

  1. Absalon, C., Hamze, K., Blanot, D., Frehel, C., Carballido-Lopez, R., Holland, B. I., van Heijenoort, J. & Seror, S. J. ( 2008; ). The GTPase, CpgA is implicated in the deposition of the peptidoglycan sacculus in B. subtilis. J Bacteriol 190, 3786–3790.[CrossRef]
    [Google Scholar]
  2. Akbar, S., Gaidenko, T. A., Kang, C. M., O'Reilly, M., Devine, K. M. & Price, C. W. ( 2001; ). New family of regulators in the environmental signaling pathway which activates the general stress transcription factor σ B of Bacillus subtilis. J Bacteriol 183, 1329–1338.[CrossRef]
    [Google Scholar]
  3. Alexander, C., Bilgin, N., Lindschau, C., Mesters, J. R., Kraal, B., Hilgenfeld, R., Erdmann, V. A. & Lippmann, C. ( 1995; ). Phosphorylation of elongation factor Tu prevents ternary complex formation. J Biol Chem 270, 14541–14547.[CrossRef]
    [Google Scholar]
  4. Anagnostopoulos, C. & Spizizen, J. ( 1961; ). Requirements for transformation in Bacillus subtilis. J Bacteriol 81, 741–746.
    [Google Scholar]
  5. Antelmann, H., Engelmann, S., Schmid, R., Sorokin, A., Lapidus, A. & Hecker, M. ( 1997; ). Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor σ B in Bacillus subtilis. J Bacteriol 179, 7251–7256.
    [Google Scholar]
  6. Archambaud, C., Gouin, E., Pizarro-Cerda, J., Cossart, P. & Dussurget, O. ( 2005; ). Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes. Mol Microbiol 56, 383–396.[CrossRef]
    [Google Scholar]
  7. Canova, M. J., Veyron-Churlet, R., Zanella-Cleon, I., Cohen-Gonsaud, M., Cozzone, A. J., Becchi, M., Kremer, L. & Molle, V. ( 2008; ). The Mycobacterium tuberculosis serine/threonine kinase PknL phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c. Proteomics 8, 521–533.[CrossRef]
    [Google Scholar]
  8. Cladière, L., Hamze, K., Madec, E., Levdikov, V. M., Wilkinson, A. J., Holland, I. B. & Séror, S. J. ( 2006; ). The GTPase, CpgA(YloQ), a putative translation factor, is implicated in morphogenesis in Bacillus subtilis. Mol Genet Genomics 275, 409–420.[CrossRef]
    [Google Scholar]
  9. Crameri, A., Whitehorn, E. A., Tate, E. & Stemmer, W. P. ( 1996; ). Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14, 315–319.[CrossRef]
    [Google Scholar]
  10. Dasgupta, A., Datta, P., Kundu, M. & Basu, J. ( 2006; ). The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152, 493–504.[CrossRef]
    [Google Scholar]
  11. Eymann, C., Dreisbach, A., Albrecht, D., Bernhardt, J., Becher, D., Gentner, S., Tam le, T., Büttner, K., Buurman, G. & other authors ( 2004; ). A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4, 2849–2876.[CrossRef]
    [Google Scholar]
  12. Eymann, C., Becher, D., Bernhardt, J., Gronau, K., Klutzny, A. & Hecker, M. ( 2007; ). Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. Proteomics 7, 3509–3526.[CrossRef]
    [Google Scholar]
  13. Fernandez, P., Saint-Joanis, B., Barilone, N., Jackson, M., Gicquel, B., Cole, S. T. & Alzari, P. M. ( 2006; ). The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J Bacteriol 188, 7778–7784.[CrossRef]
    [Google Scholar]
  14. Gaidenko, T. A., Kim, T.-J. & Price, C. W. ( 2002; ). The PrpC serine-threonine phosphatase and PrkC kinase have opposing physiological roles in stationary-phase Bacillus subtilis cells. J Bacteriol 184, 6109–6114.[CrossRef]
    [Google Scholar]
  15. Good, M. C., Greenstein, A. E., Young, T. A., Ng, H. L. & Alber, T. ( 2004; ). Sensor domain of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknD, forms a highly symmetric beta propeller. J Mol Biol 339, 459–469.[CrossRef]
    [Google Scholar]
  16. Greenstein, A. E., Echols, N., Lombana, T. N., King, D. S. & Alber, T. ( 2007; ). Allosteric activation by dimerization of the PknD receptor Ser/Thr protein kinase from Mycobacterium tuberculosis. J Biol Chem 282, 11427–11435.[CrossRef]
    [Google Scholar]
  17. Grundner, C., Gay, L. M. & Alber, T. ( 2005; ). Mycobacterium tuberculosis serine/threonine kinases PknB, PknD, PknE, and PknF phosphorylate multiple FHA domains. Protein Sci 14, 1918–1921.[CrossRef]
    [Google Scholar]
  18. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  19. Hecker, M., Pané-Farré, J. & Völker, U. ( 2007; ). SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61, 215–236.[CrossRef]
    [Google Scholar]
  20. Hubler, L., Kher, U. & Bertics, P. J. ( 1992; ). Potentiation of epidermal growth factor receptor protein-tyrosine kinase activity by sulfate. Biochim Biophys Acta 1133, 307–315.[CrossRef]
    [Google Scholar]
  21. Huse, M. & Kuriyan, J. ( 2002; ). The conformational plasticity of protein kinases. Cell 109, 275–282.[CrossRef]
    [Google Scholar]
  22. Iwanicki, A., Hinc, K., Seror, S., Wegrzyn, G. & Obuchowski, M. ( 2005; ). Transcription in the prpC-yloQ region in Bacillus subtilis. Arch Microbiol 183, 421–430.[CrossRef]
    [Google Scholar]
  23. Jin, H. & Pancholi, V. ( 2006; ). Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in Streptococcus pyogenes: their biological functions and substrate identification. J Mol Biol 357, 1351–1372.[CrossRef]
    [Google Scholar]
  24. Jones, G. & Dyson, P. ( 2006; ). Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. J Bacteriol 188, 7470–7476.[CrossRef]
    [Google Scholar]
  25. Kang, C.-M., Abbott, D. W., Park, S. T., Dascher, C. C., Cantley, L. C. & Husson, R. N. ( 2005; ). The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19, 1692–1704.[CrossRef]
    [Google Scholar]
  26. Kang, C. M., Nyayapathy, S., Lee, J. Y., Suh, J. W. & Husson, R. N. ( 2008; ). Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154, 725–735.[CrossRef]
    [Google Scholar]
  27. Kristich, C. J., Wells, C. L. & Dunny, G. M. ( 2007; ). A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proc Natl Acad Sci U S A 104, 3508–3513.[CrossRef]
    [Google Scholar]
  28. Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessières, P., Bolotin, A. & other authors ( 1997; ). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  29. Lee, P. C., Umeyama, T. & Horinouchi, S. ( 2002; ). afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 43, 1413–1430.[CrossRef]
    [Google Scholar]
  30. Levdikov, V. M., Blagova, E. V., Brannigan, J. A., Cladière, L., Antson, A. A., Isupov, M. N., Séror, S. J. & Wilkinson, A. J. ( 2004; ). The crystal structure of YloQ, a circularly permuted GTPase essential for Bacillus subtilis viability. J Mol Biol 340, 767–782.[CrossRef]
    [Google Scholar]
  31. Lévine, A., Vannier, F., Absalon, C., Kuhn, L., Jackson, P., Scrivener, E., Labas, V., Vinh, J., Courtney, P. & other authors ( 2006; ). Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes. Proteomics 6, 2157–2173.[CrossRef]
    [Google Scholar]
  32. Lippmann, C., Lindschau, C., Vijgenboom, E., Schröder, W., Bosch, L. & Erdmann, V. A. ( 1993; ). Prokaryotic elongation factor Tu is phosphorylated in vivo. J Biol Chem 268, 601–607.
    [Google Scholar]
  33. Macek, B., Mijakovic, I., Olsen, J. V., Gnad, F., Kumar, C., Jensen, P. R. & Mann, M. ( 2007; ). The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 6, 697–707.[CrossRef]
    [Google Scholar]
  34. Madec, E., Laszkiewicz, A., Iwanicki, A., Obuchowski, M. & Séror, S. ( 2002; ). Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, implicated in developmental processes. Mol Microbiol 46, 571–586.[CrossRef]
    [Google Scholar]
  35. Madec, E., Stensballe, A., Kjellström, S., Cladière, L., Obuchowski, M., Jensen, O. N. & Séror, S. J. ( 2003; ). Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis. J Mol Biol 330, 459–472.[CrossRef]
    [Google Scholar]
  36. Mijakovic, I., Poncet, S., Boel, G., Mazé, A., Gillet, S., Jamet, E., Decottignies, P., Grangeasse, C., Doublet, P. & other authors ( 2003; ). Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. EMBO J 22, 4709–4718.[CrossRef]
    [Google Scholar]
  37. Mijakovic, I., Petranovic, D. & Deutscher, J. ( 2004; ). How tyrosine phosphorylation affects the UDP-glucose dehydrogenase activity of Bacillus subtilis YwqF. J Mol Microbiol Biotechnol 8, 19–25.[CrossRef]
    [Google Scholar]
  38. Mijakovic, I., Petranovic, D., Macek, B., Cepo, T., Mann, M., Davies, J., Jensen, P. R. & Vujaklija, D. ( 2006; ). Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34, 1588–1596.[CrossRef]
    [Google Scholar]
  39. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Molle, V., Girard-Blanc, C., Kremer, L., Doublet, P., Cozzone, A. J. & Prost, J.-F. ( 2003a; ). Protein PknE, a novel transmembrane eukaryotic-like serine/threonine kinase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 308, 820–825.[CrossRef]
    [Google Scholar]
  41. Molle, V., Kremer, L., Girard-Blanc, C., Besra, G. S., Cozzone, A. J. & Prost, J.-F. ( 2003b; ). An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. Biochemistry 42, 15300–15309.[CrossRef]
    [Google Scholar]
  42. Molle, V., Soulat, D., Jault, J. M., Grangeasse, C., Cozzone, A. J. & Prost, J. F. ( 2004; ). Two FHA domains on an ABC transporter, Rv1747, mediate its phosphorylation by PknF, a Ser/Thr protein kinase from Mycobacterium tuberculosis. FEMS Microbiol Lett 234, 215–223.[CrossRef]
    [Google Scholar]
  43. Nariya, H. & Inouye, S. ( 2005; ). Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development. Mol Microbiol 58, 367–379.[CrossRef]
    [Google Scholar]
  44. Nariya, H. & Inouye, S. ( 2006; ). A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 60, 1205–1217.[CrossRef]
    [Google Scholar]
  45. Novakova, L., Saskova, L., Pallova, P., Janecek, J., Novotna, J., Ulrych, A., Echenique, J., Trombe, M. C. & Branny, P. ( 2005; ). Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. FEBS J 272, 1243–1254.[CrossRef]
    [Google Scholar]
  46. Obuchowski, M., Madec, E., Delattre, D., Boël, G., Iwanicki, A., Foulger, D. & Séror, S. J. ( 2000; ). Characterization of PrpC from Bacillus subtilis, a member of the PPM phosphatase family. J Bacteriol 182, 5634–5638.[CrossRef]
    [Google Scholar]
  47. Pane-Farre, J., Lewis, R. J. & Stulke, J. ( 2005; ). The RsbRST stress module in bacteria: a signalling system that may interact with different output modules. J Mol Microbiol Biotechnol 9, 65–76.[CrossRef]
    [Google Scholar]
  48. Pérez, J., Garcia, R., Bach, H., de Waard, J. H., Jacobs, W. R., Av-Gay, Y., Bubis, J. & Takiff, H. E. ( 2006; ). Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD. Biochem Biophys Res Commun 348, 6–12.[CrossRef]
    [Google Scholar]
  49. Rajagopal, L., Vo, A., Silvestroni, A. & Rubens, C. E. ( 2005; ). Regulation of purine biosynthesis by a eukaryotic-type kinase in Streptococcus agalactiae. Mol Microbiol 56, 1329–1346.[CrossRef]
    [Google Scholar]
  50. Saskova, L., Novakova, L., Basler, M. & Branny, P. ( 2007; ). Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae. J Bacteriol 189, 4168–4179.[CrossRef]
    [Google Scholar]
  51. Shah, I. M., Laaberki, M. H., Popham, D. L. & Dworkin, J. K. ( 2008; ). A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135, 486–496.[CrossRef]
    [Google Scholar]
  52. Sharma, K., Gupta, M., Krupa, A., Srinivasan, N. & Singh, Y. ( 2006; ). EmbR, a regulatory protein with ATPase activity, is a substrate of multiple serine/threonine kinases and phosphatase in Mycobacterium tuberculosis. FEBS J 273, 2711–2721.[CrossRef]
    [Google Scholar]
  53. Studier, F. W. & Moffatt, B. A. ( 1986; ). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130.[CrossRef]
    [Google Scholar]
  54. Thakur, M. & Chakraborti, P. K. ( 2006; ). GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J Biol Chem 281, 40107–40113.[CrossRef]
    [Google Scholar]
  55. Yang, X., Kang, C. M., Brody, M. S. & Price, C. W. ( 1996; ). Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev 10, 2265–2275.[CrossRef]
    [Google Scholar]
  56. Yeats, C., Finn, R. D. & Bateman, A. ( 2002; ). The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci 27, 438 [CrossRef]
    [Google Scholar]
  57. Young, T. A., Delagoutte, B., Endrizzi, J. A., Falick, A. M. & Alber, T. ( 2003; ). Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Biol 10, 168–174.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022475-0
Loading
/content/journal/micro/10.1099/mic.0.022475-0
Loading

Data & Media loading...

vol. , part 3, pp. 932 - 943

List of primers used in this study [ PDF] (45 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error