1887

Abstract

Two regulatory genes encoding a antibiotic regulatory protein () and a response regulator () of a bacterial two-component signal transduction system are present in the left-hand region of the biosynthetic gene cluster of the antibiotic virginiamycin, which is composed of virginiamycin M (VM) and virginiamycin S (VS), in . Disruption of abolished both VM and VS biosynthesis, with drastic alteration of the transcriptional profile for virginiamycin biosynthetic genes, whereas disruption of resulted in only a loss of VM biosynthesis, suggesting that is a pathway-specific regulator for both VM and VS biosynthesis, and that is a pathway-specific regulator for VM biosynthesis alone. Gene expression profiles determined by semiquantitative RT-PCR on the virginiamycin biosynthetic gene cluster demonstrated that controls the biosynthetic genes for VM and VS, and controls unidentified gene(s) of VM biosynthesis located outside the biosynthetic gene cluster. In addition, transcriptional analysis of a deletion mutant of located in the clustered regulatory region in the virginiamycin cluster (and which also acts as a SARP-family activator for both VM and VS biosynthesis) indicated that the expression of and is under the control of , and also contributes to the expression of VM and VS biosynthetic genes, independent of and . Therefore, coordinated virginiamycin biosynthesis is controlled by three pathway-specific regulators which hierarchically control the expression of the biosynthetic gene cluster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022467-0
2009-04-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1250.html?itemId=/content/journal/micro/10.1099/mic.0.022467-0&mimeType=html&fmt=ahah

References

  1. Adamidis T., Champness W.. 1992; Genetic analysis of absB , a Streptomyces coelicolor locus involved in global antibiotic regulation. J Bacteriol174:4622–4628
    [Google Scholar]
  2. Arias P., Fernandez-Moreno M. A., Malpartida F.. 1999; Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol181:6958–6968
    [Google Scholar]
  3. Bate N., Stratigopoulos G., Cundliffe E.. 2002; Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis. Mol Microbiol43:449–458
    [Google Scholar]
  4. Bibb M.. 1996). 1995; Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2. Microbiology142:1335–1344
    [Google Scholar]
  5. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E.. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene116:43–49
    [Google Scholar]
  6. Di Giambattista M., Chinali G., Cocito C.. 1989; The molecular basis of the inhibitory activities of type A and type B synergimycins and related antibiotics on ribosomes. J Antimicrob Chemother24:485–507
    [Google Scholar]
  7. Furuya K., Hutchinson C. R.. 1996; The DnrN protein of Streptomyces peucetius , a pseudo-response regulator, is a DNA-binding protein involved in the regulation of daunorubicin biosynthesis. J Bacteriol178:6310–6318
    [Google Scholar]
  8. Guthrie E. P., Flaxman C. S., White J., Hodgson D. A., Bibb M. J., Chater K. F.. 1998; A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology144:727–738
    [Google Scholar]
  9. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  10. Hutchings M. I., Hoskisson P. A., Chandra G., Buttner M. J.. 2004; Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2. Microbiology150:2795–2806
    [Google Scholar]
  11. Kawachi R., Akashi T., Kamitani Y., Sy A., Wangchaisoonthorn U., Nihira T., Yamada Y.. 2000a; Identification of an AfsA homologue (BarX) from Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol Microbiol36:302–313
    [Google Scholar]
  12. Kawachi R., Wangchaisoonthorn U., Nihira T., Yamada Y.. 2000b; Identification by gene deletion analysis of a regulator, VmsR, that controls virginiamycin biosynthesis in Streptomyces virginiae . J Bacteriol182:6259–6263
    [Google Scholar]
  13. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
  14. Kinoshita H., Ipposhi H., Okamoto S., Nakano H., Nihira T., Yamada Y.. 1997; Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae . J Bacteriol179:6986–6993
    [Google Scholar]
  15. Kitani S., Bibb M., Nihira T., Yamada Y.. 2000; Conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces lavendulae FRI-5. J Microbiol Biotechnol10:535–538
    [Google Scholar]
  16. Lawlor E. J., Baylis H. A., Chater K. F.. 1987; Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2. Genes Dev1:1305–1310
    [Google Scholar]
  17. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T.. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene111:61–68
    [Google Scholar]
  18. Namwat W., Lee C. K., Kinoshita H., Yamada Y., Nihira T.. 2001; Identification of the varR gene as a transcriptional regulator of virginiamycin S resistance in Streptomyces virginiae . J Bacteriol183:2025–2031
    [Google Scholar]
  19. Namwat W., Kamioka Y., Kinoshita H., Yamada Y., Nihira T.. 2002; Characterization of virginiamycin S biosynthetic genes from Streptomyces virginiae . Gene286:283–290
    [Google Scholar]
  20. Nihira T., Shimizu Y., Kim H. S., Yamada Y.. 1988; Structure–activity relationships of virginiae butanolide C, an inducer of virginiamycin production in Streptomyces virginiae . J Antibiot (Tokyo41:1828–1837
    [Google Scholar]
  21. O'Connor T. J., Nodwell J. R.. 2005; Pivotal roles for the receiver domain in the mechanism of action of the response regulator RamR of Streptomyces coelicolor . J Mol Biol351:1030–1047
    [Google Scholar]
  22. Paget M. S., Chamberlin L., Atrih A., Foster S. J., Buttner M. J.. 1999; Evidence that the extracytoplasmic function sigma factor σ E is required for normal cell wall structure in Streptomyces coelicolor A3(2. J Bacteriol181:204–211
    [Google Scholar]
  23. Pulsawat N., Kitani S., Nihira T.. 2007; Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae . Gene393:31–42
    [Google Scholar]
  24. Sambrook J., Russell D. W.. 2001; Molecular Cloning : a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Sheldon P. J., Busarow S. B., Hutchinson C. R.. 2002; Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol44:449–460
    [Google Scholar]
  26. Tanaka A., Takano Y., Ohnishi Y., Horinouchi S.. 2007; AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J Mol Biol369:322–333
    [Google Scholar]
  27. Yanagimoto M.. 1983; Novel actions of inducer in staphylomycin production by Streptomyces virginiae . J Ferment Technol61:443–448
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022467-0
Loading
/content/journal/micro/10.1099/mic.0.022467-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error