1887

Abstract

A Ca signal is required for the process of heterocyst differentiation in the filamentous diazotrophic cyanobacterium sp. PCC 7120. This paper presents evidence that a transient increase in intracellular free Ca is also involved in acclimation to nitrogen starvation in the unicellular non-diazotrophic cyanobacterium PCC 7942. The Ca transient was triggered in response to nitrogen step-down or the addition of 2-oxoglutarate (2-OG), or its analogues 2,2-difluoropentanedioic acid (DFPA) and 2-methylenepentanedioic acid (2-MPA), to cells growing with combined nitrogen, suggesting that an increase in intracellular 2-OG levels precedes the Ca transient. The signalling protein P and the transcriptional regulator NtcA appear to be needed to trigger the signal. Suppression of the Ca transient by the intracellular Ca chelator ,-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-,bis[(acetyloxy)methyl] ester (BAPTA-AM) inhibited expression of the and genes, which are involved in acclimation to nitrogen starvation and transcriptionally activated by NtcA. BAPTA-AM treatment partially inhibited expression of the gene, which is involved in phycobiliprotein degradation following nutrient starvation and is regulated by NtcA and NblR; in close agreement, BAPTA-AM treatment partially inhibited bleaching following nitrogen starvation. Taken together, the results presented here strongly suggest an involvement of a defined Ca transient in acclimation of to nitrogen starvation through NtcA-dependent regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022251-0
2009-01-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/25.html?itemId=/content/journal/micro/10.1099/mic.0.022251-0&mimeType=html&fmt=ahah

References

  1. Aldehni, M. F. & Forchhammer, K. ( 2006; ). Analysis of a non-canonical NtcA-dependent promoter in Synechococcus elongatus and its regulation by NtcA and PII. Arch Microbiol 184, 378–386.[CrossRef]
    [Google Scholar]
  2. Aldehni, M. F., Sauer, J., Spielhaupter, C., Schmid, R. & Forchhammer, K. ( 2003; ). Signal transduction protein PII is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus strain PCC 7942. J Bacteriol 185, 2582–2591.[CrossRef]
    [Google Scholar]
  3. Allen, M. M. & Smith, A. J. ( 1969; ). Nitrogen chlorosis in blue-green algae. Arch Mikrobiol 69, 114–120.[CrossRef]
    [Google Scholar]
  4. Bennet, A. & Bogorad, L. ( 1973; ). Complementary chromatic adaptation in cyanobacteria. J Bacteriol 130, 82–91.
    [Google Scholar]
  5. Bhaya, D., Schwarz, R. & Grossman, A. R. ( 2000; ). Molecular responses to environmental stress. In The Ecology of Cyanobacteria, pp. 397–442. Edited by B. A. Whitton & M. Potts. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  6. Bienert, R., Baier, K., Volkmer, R., Lockau, W. & Heinemann, U. ( 2006; ). Crystal structure of NblA from Anabaena sp. PCC 7120, a small protein playing a key role in phycobilisome degradation. J Biol Chem 281, 5216–5223.[CrossRef]
    [Google Scholar]
  7. Chen, H., Laurent, S., Bedu, S., Ziarelli, F., Chen, H. L., Cheng, Y., Zhang, C. C. & Peng, L. ( 2006; ). Studying the signaling role of 2-oxoglutaric acid using analogs that mimic the ketone and ketal forms of 2-oxoglutaric acid. Chem Biol 13, 849–856.[CrossRef]
    [Google Scholar]
  8. Collier, J. L. & Grossman, A. R. ( 1994; ). A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13, 1039–1047.
    [Google Scholar]
  9. Elhai, J. & Wolk, C. P. ( 1988; ). Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167, 747–754.
    [Google Scholar]
  10. Espinosa, J., Forchhammer, K., Burillo, S. & Contreras, A. ( 2006; ). Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA. Mol Microbiol 61, 457–469.[CrossRef]
    [Google Scholar]
  11. Espinosa, J., Forchhammer, K. & Contreras, A. ( 2007; ). Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes. Microbiology 153, 711–718.[CrossRef]
    [Google Scholar]
  12. Forchhammer, K. ( 2004; ). Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28, 319–333.[CrossRef]
    [Google Scholar]
  13. Forchhammer, K. & Tandeau de Marsac, N. ( 1995; ). Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 177, 2033–2040.
    [Google Scholar]
  14. Gendel, S., Straus, N., Pulleyblank, D. & Williams, J. ( 1983; ). Shuttle cloning vectors for the cyanobacterium Anacystis nidulans. J Bacteriol 156, 148–154.
    [Google Scholar]
  15. Golden, S. S., Brusslan, J. & Haselkorn, R. ( 1987; ). Genetic engineering of the cyanobacterial chromosome. Methods Enzymol 153, 215–231.
    [Google Scholar]
  16. Görl, M., Sauer, J., Baier, T. & Forchhammer, K. ( 1998; ). Nitrogen-starvation-induced chlorosis in Synechococcus PCC 7942: adaptation to long-term survival. Microbiology 144, 2449–2458.[CrossRef]
    [Google Scholar]
  17. Grossman, A. R., Bhaya, D. & He, Q. ( 2001; ). Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276, 11449–11452.[CrossRef]
    [Google Scholar]
  18. Hastings, J. W. & Weber, G. ( 1963; ). Total quantum flux of isotropic sources. J Opt Soc Am 53, 1410–1415.[CrossRef]
    [Google Scholar]
  19. Herrero, A., Muro-Pastor, A. M. & Flores, E. ( 2001; ). Nitrogen control in cyanobacteria. J Bacteriol 183, 411–425.[CrossRef]
    [Google Scholar]
  20. Herrero, A., Muro-Pastor, A. M., Valladares, A. & Flores, E. ( 2004; ). Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28, 469–487.[CrossRef]
    [Google Scholar]
  21. Laurent, S., Chen, H., Bedu, S., Ziarelli, F., Peng, L. & Zhang, C. C. ( 2005; ). Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 102, 9907–9912.[CrossRef]
    [Google Scholar]
  22. Li, H. & Sherman, L. A. ( 2002; ). Characterization of Synechocystis sp. strain PCC 6803 and Δnbl mutants under nitrogen-deficient conditions. Arch Microbiol 178, 256–266.[CrossRef]
    [Google Scholar]
  23. Li, J. H., Laurent, S., Konde, V., Bedu, S. & Zhang, C. C. ( 2003; ). An increase in the level of 2-oxoglutarate promotes heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 149, 3257–3263.[CrossRef]
    [Google Scholar]
  24. Luque, I., Zabulon, G., Contreras, A. & Houmard, J. ( 2001; ). Convergence of two global transcriptional regulators on nitrogen induction of the stress-acclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 41, 937–947.
    [Google Scholar]
  25. Luque, I., Ochoa De Alda, J. A., Richaud, C., Zabulon, G., Thomas, J. C. & Houmard, J. ( 2003; ). The NblAI protein from the filamentous cyanobacterium Tolypothrix PCC 7601: regulation of its expression and interactions with phycobilisome components. Mol Microbiol 50, 1043–1054.[CrossRef]
    [Google Scholar]
  26. Maheswaran, M., Urbanke, C. & Forchhammer, K. ( 2004; ). Complex formation and catalytic activation by the PII signaling protein of N-acetyl-l-glutamate kinase from Synechococcus elongatus strain PCC 7942. J Biol Chem 279, 55202–55210.[CrossRef]
    [Google Scholar]
  27. Marker, A. F. H. ( 1972; ). The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshw Biol 2, 361–385.[CrossRef]
    [Google Scholar]
  28. Rippka, R. ( 1988; ). Isolation and purification of cyanobacteria. Methods Enzymol 167, 3–27.
    [Google Scholar]
  29. Sauer, J., Görl, M. & Forchhammer, K. ( 1999; ). Nitrogen starvation in Synechococcus PCC 7942: involvement of glutamine synthetase and NtcA in phycobiliprotein degradation and survival. Arch Microbiol 172, 247–255.[CrossRef]
    [Google Scholar]
  30. Schwarz, R. & Forchhammer, K. ( 2005; ). Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151, 2503–2514.[CrossRef]
    [Google Scholar]
  31. Schwarz, R. & Grossman, A. R. ( 1998; ). A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Natl Acad Sci U S A 95, 11008–11013.[CrossRef]
    [Google Scholar]
  32. Shi, Y., Zhao, W., Zhang, W., Ye, Z. & Zhao, J. ( 2006; ). Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 103, 11334–11339.[CrossRef]
    [Google Scholar]
  33. Tandeau-de-Marsac, N. & Houmard, J. ( 1993; ). Adaptation of cyanobacteria to environmental stimuli, new steps towards molecular mechanisms. FEMS Microbiol Rev 104, 119–189.[CrossRef]
    [Google Scholar]
  34. Torrecilla, I., Leganes, F., Bonilla, I. & Fernandez-Pinas, F. ( 2000; ). Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacteria. Plant Physiol 123, 161–176.[CrossRef]
    [Google Scholar]
  35. Torrecilla, I., Leganes, F., Bonilla, I. & Fernandez-Pinas, F. ( 2004; ). A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp. PCC7120. Microbiology 150, 3731–3739.[CrossRef]
    [Google Scholar]
  36. Tous, C., Vega-Palas, M. A. & Vioque, A. ( 2001; ). Conditional expression of RNase P in the cyanobacterium Synechocystis sp. PCC6803 allows detection of precursor RNAs. Insight in the in vivo maturation pathway of transfer and other stable RNAs. J Biol Chem 276, 29059–29066.[CrossRef]
    [Google Scholar]
  37. Vázquez-Bermúdez, M. F., Herrero, A. & Flores, E. ( 2003; ). Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC 7942. FEMS Microbiol Lett 221, 155–159.[CrossRef]
    [Google Scholar]
  38. Vega-Palas, M. A., Flores, E. & Herrero, A. ( 1992; ). NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol Microbiol 6, 1853–1859.[CrossRef]
    [Google Scholar]
  39. Wolk, C. P., Vonshak, A., Kehoe, P. & Elhai, J. ( 1984; ). Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc Natl Acad Sci U S A 81, 1561–1565.[CrossRef]
    [Google Scholar]
  40. Wyman, M. & Fay, P. ( 1986; ). Underwater light climate and the growth and pigmentation of planktonic blue-green algae (cyanobacteria) I. The influence of light quantity. Proc R Soc Lond B Biol Sci 227, 367–380.[CrossRef]
    [Google Scholar]
  41. Zhao, Y., Shi, Y., Zhao, W., Huang, X., Wang, D., Brown, N., Brand, J. & Zhao, J. ( 2005; ). CcbP, a calcium-binding protein from Anabaena sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation. Proc Natl Acad Sci U S A 102, 5744–5748.[CrossRef]
    [Google Scholar]
  42. Zinchenko, V. V., Piven, I. V., Melnik, V. A. & Shestakov, S. V. ( 1999; ). Vectors for the complementation analysis of cyanobacterial mutants. Mol Genet 35, 228–232.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022251-0
Loading
/content/journal/micro/10.1099/mic.0.022251-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error