1887

Abstract

is a biotin-auxotrophic bacterium and some strains efficiently produce glutamic acid under biotin-limiting conditions. In an effort to understand metabolism under biotin limitation, growth of the type strain ATCC 13032 was investigated in batch cultures and a time-course analysis was performed. A transient excretion of organic acids was observed and we focused our attention on lactate synthesis. Lactate synthesis was due to the -encoded -lactate dehydrogenase (Ldh). Features of Ldh activity and transcription were analysed. The gene was shown to be regulated at the transcriptional level by SugR, a pleiotropic transcriptional repressor also acting on most phosphotransferase system (PTS) genes. Electrophoretic mobility shift assays (EMSAs) and site-directed mutagenesis allowed the identification of the SugR-binding site. Effector studies using EMSAs and analysis of expression in a mutant revealed fructose 1-phosphate as a highly efficient negative effector of SugR. Fructose 1,6-bisphosphate also affected SugR binding.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022004-0
2009-04-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1360.html?itemId=/content/journal/micro/10.1099/mic.0.022004-0&mimeType=html&fmt=ahah

References

  1. Abe, S., Takayama, K. I. & Kinoshita, S. ( 1967; ). Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol 13, 279–301.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1987; ). Current Protocols in Molecular Biology. New York: Wiley-Interscience.
  4. Bailey, T. L. & Elkan, C. ( 1994; ). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28–36. Menlo Park, CA: AAAI Press.
  5. Baumbach, J., Wittkop, T., Rademacher, K., Rahmann, S., Brinkrolf, K. & Tauch, A. ( 2007; ). CoryneRegNet 3.0 – an interactive systems biology platform for the analysis of gene regulatory networks in corynebacteria and Escherichia coli. J Biotechnol 129, 279–289.[CrossRef]
    [Google Scholar]
  6. Bendt, A. K., Burkovski, A., Schaffer, S., Bott, M., Farwick, M. & Hermann, T. ( 2003; ). Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3, 1637–1646.[CrossRef]
    [Google Scholar]
  7. Bergmeyer, H. U. & Bernt, E. ( 1974; ). UV assay with pyruvate and NADH. In Methods of Enzymatic Analysis, pp. 576–579. Edited by H. U. Bergmeyer. New York: Academic Press.
  8. Bonamy, C., Guyonvarch, A., Reyes, O., David, F. & Leblon, G. ( 1990; ). Interspecies electro-transformation in corynebacteria. FEMS Microbiol Lett 54, 263–269.
    [Google Scholar]
  9. Börmann, E. R., Eikmanns, B. J. & Sahm, H. ( 1992; ). Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol 6, 317–326.[CrossRef]
    [Google Scholar]
  10. Bower, S., Perkins, J. B., Yocum, R. R., Howitt, C. L., Rahaim, P. & Pero, J. ( 1996; ). Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J Bacteriol 178, 4122–4130.
    [Google Scholar]
  11. Cerdeño-Tárraga, A. M., Efstratiou, A., Dover, L. G., Holden, M. T. G., Pallen, M., Bentley, S. D., Besra, G. S., Churcher, C., James, K. D. & other authors ( 2003; ). The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31, 6516–6523.[CrossRef]
    [Google Scholar]
  12. Choi, S.-U., Nihira, T. & Yoshida, T. ( 2004; ). Enhanced glutamic acid production of Brevibacterium sp. with temperature shift-up cultivation. J Biosci Bioeng 98, 211–213.[CrossRef]
    [Google Scholar]
  13. Clarke, A. R., Atkinson, T. & Holbrook, J. J. ( 1989; ). From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part I. Trends Biochem Sci 14, 101–105.[CrossRef]
    [Google Scholar]
  14. Cocaign-Bousquet, M., Guyonvarch, A. & Lindley, N. D. ( 1996; ). Growth rate-dependent modulation of carbon flux through central metabolism and the kinetic consequences for glucose-limited chemostat cultures of Corynebacterium glutamicum. Appl Environ Microbiol 62, 429–436.
    [Google Scholar]
  15. Contag, P. R., Williams, M. G. & Rogers, P. ( 1990; ). Cloning of a lactate dehydrogenase gene from Clostridium acetobutylicum B643 and expression in Escherichia coli. Appl Environ Microbiol 56, 3760–3765.
    [Google Scholar]
  16. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. ( 2004; ). WebLogo: a sequence logo generator. Genome Res 14, 1188–1190.[CrossRef]
    [Google Scholar]
  17. Dartois, V., Phalip, V., Schmitt, P. & Diviès, C. ( 1995; ). Purification, properties and DNA sequence of the d-lactate dehydrogenase from Leuconostoc mesenteroides subsp. cremoris. Res Microbiol 146, 291–302.[CrossRef]
    [Google Scholar]
  18. Dominguez, H. & Lindley, N. D. ( 1996; ). Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol 62, 3878–3880.
    [Google Scholar]
  19. Dominguez, H., Nezondet, C., Lindley, N. D. & Cocaign, M. ( 1993; ). Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotechnol Lett 15, 449–454.[CrossRef]
    [Google Scholar]
  20. Dominguez, H., Rollin, C., Guyonvarch, A., Guerquin-Kern, J. L., Cocaign-Bousquet, M. & Lindley, N. D. ( 1998; ). Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254, 96–102.[CrossRef]
    [Google Scholar]
  21. Dsouza, M., Larsen, N. & Overbeek, R. ( 1997; ). Searching for patterns in genomic data. Trends Genet 13, 497–498.
    [Google Scholar]
  22. Dusch, N., Pühler, A. & Kalinowski, J. ( 1999; ). Expression of the Corynebacterium glutamicum panD gene encoding l-aspartate-α-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol 65, 1530–1539.
    [Google Scholar]
  23. Eikmanns, B. J., Rittmann, D. & Sahm, H. ( 1995; ). Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177, 774–782.
    [Google Scholar]
  24. Eisenberg, M. A. ( 1987; ). Biosynthesis of biotin and lipoic acid. In Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1, pp. 544–550. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  25. Engels, S., Schweitzer, J. E., Ludwig, C., Bott, M. & Schaffer, S. ( 2004; ). clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σ H. Mol Microbiol 52, 285–302.[CrossRef]
    [Google Scholar]
  26. Engels, V. & Wendisch, V. F. ( 2007; ). The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J Bacteriol 189, 2955–2966.[CrossRef]
    [Google Scholar]
  27. Engels, V., Georgi, T. & Wendisch, V. F. ( 2008; ). ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum. FEMS Microbiol Lett 289, 80–89.[CrossRef]
    [Google Scholar]
  28. Gabrielsen, O. S., Hornes, E., Korsnes, L., Ruet, A. & Oyen, T. B. ( 1989; ). Magnetic DNA affinity purification of yeast transcription factor tau – a new purification principle for the ultrarapid isolation of near homogeneous factor. Nucleic Acids Res 17, 6253–6267.[CrossRef]
    [Google Scholar]
  29. Gaigalat, L., Schlüter, J. P., Hartmann, M., Mormann, S., Tauch, A., Pühler, A. & Kalinowski, J. ( 2007; ). The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate : sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol 8, 104 [CrossRef]
    [Google Scholar]
  30. Garrigues, C., Loubière, P., Lindley, N. D. & Cocaign-Bousquet, M. ( 1997; ). Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179, 5282–5287.
    [Google Scholar]
  31. Garvie, E. I. ( 1980; ). Bacterial lactate dehydrogenases. Microbiol Rev 44, 106–139.
    [Google Scholar]
  32. Georgi, T., Engels, V. & Wendisch, V. F. ( 2008; ). Regulation of l-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. J Bacteriol 190, 963–971.[CrossRef]
    [Google Scholar]
  33. Gerstmeir, R., Wendisch, V. F., Schnicke, S., Ruan, H., Farwick, M., Reinscheid, D. & Eikmanns, B. J. ( 2003; ). Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104, 99–122.[CrossRef]
    [Google Scholar]
  34. Gerstmeir, R., Cramer, A., Dangel, P., Schaffer, S. & Eikmanns, B. J. ( 2004; ). RamB, a novel transcriptional regulator involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 186, 2798–2809.[CrossRef]
    [Google Scholar]
  35. Gralla, J. D. & Collado-Vides, J. ( 1996; ). Organization and function of transcription regulatory elements. In Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1, pp. 1232–1245. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  36. Hatakeyama, K., Hohama, K., Vertès, A. A., Kobayashi, M., Kurusu, Y. & Yukawa, H. ( 1993a; ). Analysis of the biotin biosynthesis pathway in coryneform bacteria: cloning and sequencing of the bioB gene from Brevibacterium flavum. DNA Seq 4, 87–93.
    [Google Scholar]
  37. Hatakeyama, K., Hohama, K., Vertès, A. A., Kobayashi, M., Kurusu, Y. & Yukawa, H. ( 1993b; ). Genomic organization of the biotin biosynthetic genes of coryneform bacteria: cloning and sequencing of the bioA-bioD genes from Brevibacterium flavum. DNA Seq 4, 177–184.
    [Google Scholar]
  38. Hermann, T., Pfefferle, W., Baumann, C., Busker, E., Schaffer, S., Bott, M., Sahm, H., Dusch, N., Kalinowski, J. & other authors ( 2001; ). Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22, 1712–1723.[CrossRef]
    [Google Scholar]
  39. Hoischen, C. & Krämer, R. ( 1989; ). Evidence for an efflux carrier system involved in the secretion of glutamate by Corynebacterium glutamicum. Arch Microbiol 151, 342–347.[CrossRef]
    [Google Scholar]
  40. Hüser, A. T., Chassagnole, C., Lindley, N. D., Merkamm, M., Guyonvarch, A., Elisáková, V., Pátek, M., Kalinowski, J., Brune, I. & other authors ( 2005; ). Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71, 3255–3268.[CrossRef]
    [Google Scholar]
  41. Inui, M., Murakami, S., Okino, S., Kawaguchi, H., Vertès, A. A. & Yukawa, H. ( 2004; ). Metabolic analysis of Corynebacterium glutamicum during lactate and succinate production under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7, 182–196.[CrossRef]
    [Google Scholar]
  42. Ishige, T., Krause, M., Bott, M., Wendisch, V. F. & Sahm, H. ( 2003; ). The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185, 4519–4529.[CrossRef]
    [Google Scholar]
  43. Jäger, W., Peters-Wendisch, P. G., Kalinowski, J. & Pühler, A. ( 1996; ). A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins. Arch Microbiol 166, 76–82.[CrossRef]
    [Google Scholar]
  44. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J. & other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  45. Keilhauer, C., Eggeling, L. & Sahm, H. ( 1993; ). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of thr ilvB-ilvN-ilvC operon. J Bacteriol 175, 5595–5603.
    [Google Scholar]
  46. Kikuchi, M. & Nakao, Y. ( 1986; ). Glutamic acid. In Progress in Industrial Microbiology, vol. 24, pp. 101–106. Edited by K. Aido and others. Amsterdam, The Netherlands: Elsevier.
  47. Kinoshita, K., Udaka, S. & Shimono, M. ( 1957; ). Studies on the amino acid fermentation: I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3, 193–205.[CrossRef]
    [Google Scholar]
  48. Kirchner, O. & Tauch, A. ( 2003; ). Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104, 287–299.[CrossRef]
    [Google Scholar]
  49. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  50. Lee, S. J., Moulakakis, C., Koning, S. M., Hausner, W., Thomm, M. & Boos, W. ( 2005; ). TrmB, a sugar sensing regulator of ABC transporter genes in Pyrococcus furiosus exhibits dual promoter specificity and is controlled by different inducers. Mol Microbiol 57, 1797–1807.[CrossRef]
    [Google Scholar]
  51. Lee, S. J., Surma, M., Seitz, S., Hausner, W., Thomm, M. & Boos, W. ( 2007; ). Differential signal transduction via TrmB, a sugar sensing transcriptional repressor of Pyrococcus furiosus. Mol Microbiol 64, 1499–1505.[CrossRef]
    [Google Scholar]
  52. Meers, J. L., Tempest, D. W. & Brown, C. M. ( 1970; ). ‘Glutamine (amide) : 2-oxoglutarate amino transferase oxido-reductase (NADP)’ an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol 64, 187–194.[CrossRef]
    [Google Scholar]
  53. Merkamm, M. & Guyonvarch, A. ( 2001; ). Cloning of the sodA gene from Corynebacterium melassecola and role of superoxide dismutase in cellular viability. J Bacteriol 183, 1284–1295.[CrossRef]
    [Google Scholar]
  54. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  55. Moon, M. W., Kim, H. J., Oh, T. K., Shin, C. S., Lee, J. S., Kim, S. J. & Lee, J. K. ( 2005; ). Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244, 259–266.[CrossRef]
    [Google Scholar]
  56. Mortensen, L., Dandanell, G. & Hammer, K. ( 1989; ). Purification and characterization of the DeoR repressor of Escherichia coli. EMBO J 8, 325–331.
    [Google Scholar]
  57. Muffler, A., Bettermann, S., Haushalter, M., Hörlein, A., Neveling, U., Schramm, M. & Sorgenfrei, O. ( 2002; ). Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol 98, 255–268.[CrossRef]
    [Google Scholar]
  58. Nachlas, M. M., Davidson, M. B., Goldberg, J. D. & Seligman, A. M. ( 1963; ). Colorimetric method for the measurement of isocitric dehydrogenase activity. J Lab Clin Med 62, 148–158.
    [Google Scholar]
  59. Nishio, Y., Nakamura, Y., Kawarabayasi, Y., Usuda, Y., Kimura, E., Sugimoto, S., Matsui, K., Yamagishi, A., Kikuchi, H. & other authors ( 2003; ). Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13, 1572–1579.[CrossRef]
    [Google Scholar]
  60. Okino, S., Inui, M. & Yukawa, H. ( 2005; ). Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68, 475–480.[CrossRef]
    [Google Scholar]
  61. Pátek, M., Nesvera, J., Guyonvarch, A., Reyes, O. & Leblon, G. ( 2003; ). Promoters of Corynebacterium glutamicum. J Biotechnol 104, 311–323.[CrossRef]
    [Google Scholar]
  62. Peters-Wendisch, P. G., Kreutzer, C., Kalinowski, J., Pátek, M., Sahm, H. & Eikmanns, B. J. ( 1998; ). Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144, 915–927.[CrossRef]
    [Google Scholar]
  63. Portevin, D., de Sousa D'Auria, C., Montrozier, H., Houssin, C., Stella, A., Lanéelle, M. A., Bardou, F., Guilhot, C. & Daffé, M. ( 2005; ). The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem 280, 8862–8874.[CrossRef]
    [Google Scholar]
  64. Rey, D. A., Pühler, A. & Kalinowski, J. ( 2003; ). The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 103, 51–65.[CrossRef]
    [Google Scholar]
  65. Rey, D. A., Nentwich, S. S., Koch, D. J., Rückert, C., Pühler, A., Tauch, A. & Kalinowski, J. ( 2005; ). The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulfur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56, 871–887.[CrossRef]
    [Google Scholar]
  66. Rollin, C., Morgant, V., Guyonvarch, A. & Guerquin-Kern, J. L. ( 1995; ). 13C-NMR studies of Corynebacterium melassecola metabolic pathways. Eur J Biochem 227, 488–493.[CrossRef]
    [Google Scholar]
  67. Rovira, A. D. & Harris, J. R. ( 1961; ). Plant root excretions in relation to the rhizosphere effect. V. The exudation of B-group vitamins. Plant Soil 14, 199–214.[CrossRef]
    [Google Scholar]
  68. Roy, S., Sahu, A. & Adhya, S. ( 2002; ). Evolution of DNA binding motifs and operators. Gene 285, 169–173.[CrossRef]
    [Google Scholar]
  69. Ruffert, S., Lambert, C., Peter, H., Wendisch, F. & Krämer, R. ( 1997; ). Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. Eur J Biochem 247, 572–580.[CrossRef]
    [Google Scholar]
  70. Sahm, H., Eggeling, L. & de Graaf, A. A. ( 2000; ). Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381, 899–910.
    [Google Scholar]
  71. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  72. Samols, D., Thornton, C. G., Murtif, V. L., Kumar, G. K., Haase, C. & Wood, H. G. ( 1988; ). Evolutionary conservation among biotin enzymes. J Biol Chem 263, 6461–6464.
    [Google Scholar]
  73. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  74. Sedewitz, B., Schleifer, K. H. & Götz, F. ( 1984; ). Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J Bacteriol 160, 462–465.
    [Google Scholar]
  75. Selander, R. K., Caugant, D. A., Ochman, H., Musser, J. M., Gilmour, M. N. & Whittam, T. S. ( 1986; ). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51, 873–884.
    [Google Scholar]
  76. Silberbach, M., Schäfer, M., Hüser, A. T., Kalinowski, J., Pühler, A., Krämer, B. & Burkovski, A. ( 2005a; ). Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl Environ Microbiol 71, 2391–2402.[CrossRef]
    [Google Scholar]
  77. Silberbach, M., Hüser, A. T., Kalinowski, J., Pühler, A., Walter, B., Krämer, B. & Burkovski, A. ( 2005b; ). DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum. J Biotechnol 119, 357–367.[CrossRef]
    [Google Scholar]
  78. Soual-Hoebeke, E., de Sousa-d'Auria, C., Chami, M., Baucher, M. F., Guyonvarch, A., Bayan, N., Salim, K. & Leblon, G. ( 1999; ). S-layer protein production by Corynebacterium strains is dependent on the carbon source. Microbiology 145, 3399–3408.
    [Google Scholar]
  79. Stansen, C., Uy, D., Delaunay, S., Eggeling, L., Goergen, J. L. & Wendisch, V. F. ( 2005; ). Characterization of a Corynebacterium glutamicum lactate utilisation operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71, 5920–5928.[CrossRef]
    [Google Scholar]
  80. Sullivan, J. T., Brown, S. D., Yocum, R. R. & Ronson, C. W. ( 2001; ). The bio operon on the acquired symbiosis island of Mesorhizobium sp. strain R7A includes a novel gene involved in pimeloyl-CoA synthesis. Microbiology 147, 1315–1322.
    [Google Scholar]
  81. Tanaka, Y., Teramoto, H., Inui, M. & Yukawa, H. ( 2008a; ). Regulation of expression of general components of the phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Appl Microbiol Biotechnol 78, 309–318.[CrossRef]
    [Google Scholar]
  82. Tanaka, Y., Okai, N., Teramoto, H., Inui, M. & Yukawa, H. ( 2008b; ). Regulation of the expression of phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R. Microbiology 154, 264–274.[CrossRef]
    [Google Scholar]
  83. Tauch, A., Kaiser, O., Hain, T., Goesmann, A., Weisshaar, B., Albersmeier, A., Bekel, T., Bischoff, N., Brune, I. & other authors ( 2005; ). Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187, 4671–4682.[CrossRef]
    [Google Scholar]
  84. Toh, H., Kondo, H. & Tanabe, T. ( 1993; ). Molecular evolution of biotin-dependent carboxylases. Eur J Biochem 215, 687–696.[CrossRef]
    [Google Scholar]
  85. Trésaugues, L., Collinet, B., Minard, P., Henckes, G., Aufrère, R., Blondeau, K., Liger, D., Zhou, C. Z., Janin, J. & other authors ( 2004; ). Refolding strategies from inclusion bodies in a structural genomics project. J Struct Funct Genomics 5, 195–204.[CrossRef]
    [Google Scholar]
  86. Uy, D., Delaunay, S., Germain, P., Engasser, J. M. & Goergen, J. L. ( 2003; ). Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J Biotechnol 104, 173–184.[CrossRef]
    [Google Scholar]
  87. Vallino, J. J. & Stephanopoulos, G. ( 1994; ). Carbon flux distributions at the pyruvate branch point in Corynebacterium glutamicum during lysine overproduction. Biotechnol Prog 10, 320–326.[CrossRef]
    [Google Scholar]
  88. Wendisch, V. F. ( 2003; ). Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104, 273–285.[CrossRef]
    [Google Scholar]
  89. Wennerhold, J., Krug, A. & Bott, M. ( 2005; ). The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280, 40500–40508.[CrossRef]
    [Google Scholar]
  90. Yasuda, K., Jojima, T., Suda, M., Okino, S., Inui, M. & Yukawa, H. ( 2007; ). Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 77, 853–860.[CrossRef]
    [Google Scholar]
  91. Zeng, X., Saxild, H. H. & Switzer, R. L. ( 2000; ). Purification and characterization of the DeoR repressor of Bacillus subtilis. J Bacteriol 182, 1916–1922.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022004-0
Loading
/content/journal/micro/10.1099/mic.0.022004-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error