1887

Abstract

is a biotin-auxotrophic bacterium and some strains efficiently produce glutamic acid under biotin-limiting conditions. In an effort to understand metabolism under biotin limitation, growth of the type strain ATCC 13032 was investigated in batch cultures and a time-course analysis was performed. A transient excretion of organic acids was observed and we focused our attention on lactate synthesis. Lactate synthesis was due to the -encoded -lactate dehydrogenase (Ldh). Features of Ldh activity and transcription were analysed. The gene was shown to be regulated at the transcriptional level by SugR, a pleiotropic transcriptional repressor also acting on most phosphotransferase system (PTS) genes. Electrophoretic mobility shift assays (EMSAs) and site-directed mutagenesis allowed the identification of the SugR-binding site. Effector studies using EMSAs and analysis of expression in a mutant revealed fructose 1-phosphate as a highly efficient negative effector of SugR. Fructose 1,6-bisphosphate also affected SugR binding.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022004-0
2009-04-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1360.html?itemId=/content/journal/micro/10.1099/mic.0.022004-0&mimeType=html&fmt=ahah

References

  1. Abe S., Takayama K. I., Kinoshita S.. 1967; Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol13:279–301
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D., Seidman J. G., Smith J. A., Struhl K.. 1987; Current Protocols in Molecular Biology New York: Wiley-Interscience;
  4. Bailey T. L., Elkan C.. 1994; Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology pp28–36 Menlo Park, CA: AAAI Press;
  5. Baumbach J., Wittkop T., Rademacher K., Rahmann S., Brinkrolf K., Tauch A.. 2007; CoryneRegNet 3.0 – an interactive systems biology platform for the analysis of gene regulatory networks in corynebacteria and Escherichia coli . J Biotechnol129:279–289
    [Google Scholar]
  6. Bendt A. K., Burkovski A., Schaffer S., Bott M., Farwick M., Hermann T.. 2003; Towards a phosphoproteome map of Corynebacterium glutamicum . Proteomics3:1637–1646
    [Google Scholar]
  7. Bergmeyer H. U., Bernt E.. 1974; UV assay with pyruvate and NADH. In Methods of Enzymatic Analysis pp576–579 Edited by Bergmeyer H. U.. New York: Academic Press;
  8. Bonamy C., Guyonvarch A., Reyes O., David F., Leblon G.. 1990; Interspecies electro-transformation in corynebacteria. FEMS Microbiol Lett54:263–269
    [Google Scholar]
  9. Börmann E. R., Eikmanns B. J., Sahm H.. 1992; Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol6:317–326
    [Google Scholar]
  10. Bower S., Perkins J. B., Yocum R. R., Howitt C. L., Rahaim P., Pero J.. 1996; Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J Bacteriol178:4122–4130
    [Google Scholar]
  11. Cerdeño-Tárraga A. M., Efstratiou A., Dover L. G., Holden M. T. G., Pallen M., Bentley S. D., Besra G. S., Churcher C., James K. D.. other authors 2003; The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res31:6516–6523
    [Google Scholar]
  12. Choi S.-U., Nihira T., Yoshida T.. 2004; Enhanced glutamic acid production of Brevibacterium sp. with temperature shift-up cultivation. J Biosci Bioeng98:211–213
    [Google Scholar]
  13. Clarke A. R., Atkinson T., Holbrook J. J.. 1989; From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part I. Trends Biochem Sci14:101–105
    [Google Scholar]
  14. Cocaign-Bousquet M., Guyonvarch A., Lindley N. D.. 1996; Growth rate-dependent modulation of carbon flux through central metabolism and the kinetic consequences for glucose-limited chemostat cultures of Corynebacterium glutamicum . Appl Environ Microbiol62:429–436
    [Google Scholar]
  15. Contag P. R., Williams M. G., Rogers P.. 1990; Cloning of a lactate dehydrogenase gene from Clostridium acetobutylicum B643 and expression in Escherichia coli . Appl Environ Microbiol56:3760–3765
    [Google Scholar]
  16. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. 2004; WebLogo: a sequence logo generator. Genome Res14:1188–1190
    [Google Scholar]
  17. Dartois V., Phalip V., Schmitt P., Diviès C.. 1995; Purification, properties and DNA sequence of the d-lactate dehydrogenase from Leuconostoc mesenteroides subsp. cremoris . Res Microbiol146:291–302
    [Google Scholar]
  18. Dominguez H., Lindley N. D.. 1996; Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol62:3878–3880
    [Google Scholar]
  19. Dominguez H., Nezondet C., Lindley N. D., Cocaign M.. 1993; Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotechnol Lett15:449–454
    [Google Scholar]
  20. Dominguez H., Rollin C., Guyonvarch A., Guerquin-Kern J. L., Cocaign-Bousquet M., Lindley N. D.. 1998; Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem254:96–102
    [Google Scholar]
  21. Dsouza M., Larsen N., Overbeek R.. 1997; Searching for patterns in genomic data. Trends Genet13:497–498
    [Google Scholar]
  22. Dusch N., Pühler A., Kalinowski J.. 1999; Expression of the Corynebacterium glutamicum panD gene encoding l-aspartate- α -decarboxylase leads to pantothenate overproduction in Escherichia coli . Appl Environ Microbiol65:1530–1539
    [Google Scholar]
  23. Eikmanns B. J., Rittmann D., Sahm H.. 1995; Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol177:774–782
    [Google Scholar]
  24. Eisenberg M. A.. others 1987; Biosynthesis of biotin and lipoic acid. In Escherichia coli and Salmonella : Cellular and Molecular Biology vol. 1 pp544–550 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Engels S., Schweitzer J. E., Ludwig C., Bott M., Schaffer S.. 2004; clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σ H. Mol Microbiol52:285–302
    [Google Scholar]
  26. Engels V., Wendisch V. F.. 2007; The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum . J Bacteriol189:2955–2966
    [Google Scholar]
  27. Engels V., Georgi T., Wendisch V. F.. 2008; ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum . FEMS Microbiol Lett289:80–89
    [Google Scholar]
  28. Gabrielsen O. S., Hornes E., Korsnes L., Ruet A., Oyen T. B.. 1989; Magnetic DNA affinity purification of yeast transcription factor tau – a new purification principle for the ultrarapid isolation of near homogeneous factor. Nucleic Acids Res17:6253–6267
    [Google Scholar]
  29. Gaigalat L., Schlüter J. P., Hartmann M., Mormann S., Tauch A., Pühler A., Kalinowski J.. 2007; The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate : sugar phosphotransferase system (PTS) in Corynebacterium glutamicum . BMC Mol Biol8:104
    [Google Scholar]
  30. Garrigues C., Loubière P., Lindley N. D., Cocaign-Bousquet M.. 1997; Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis : predominant role of the NADH/NAD+ ratio. J Bacteriol179:5282–5287
    [Google Scholar]
  31. Garvie E. I.. 1980; Bacterial lactate dehydrogenases. Microbiol Rev44:106–139
    [Google Scholar]
  32. Georgi T., Engels V., Wendisch V. F.. 2008; Regulation of l-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum . J Bacteriol190:963–971
    [Google Scholar]
  33. Gerstmeir R., Wendisch V. F., Schnicke S., Ruan H., Farwick M., Reinscheid D., Eikmanns B. J.. 2003; Acetate metabolism and its regulation in Corynebacterium glutamicum . J Biotechnol104:99–122
    [Google Scholar]
  34. Gerstmeir R., Cramer A., Dangel P., Schaffer S., Eikmanns B. J.. 2004; RamB, a novel transcriptional regulator involved in acetate metabolism of Corynebacterium glutamicum . J Bacteriol186:2798–2809
    [Google Scholar]
  35. Gralla J. D., Collado-Vides J.. others 1996; Organization and function of transcription regulatory elements. In Escherichia coli and Salmonella : Cellular and Molecular Biology vol. 1 pp1232–1245 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Hatakeyama K., Hohama K., Vertès A. A., Kobayashi M., Kurusu Y., Yukawa H.. 1993a; Analysis of the biotin biosynthesis pathway in coryneform bacteria: cloning and sequencing of the bioB gene from Brevibacterium flavum . DNA Seq4:87–93
    [Google Scholar]
  37. Hatakeyama K., Hohama K., Vertès A. A., Kobayashi M., Kurusu Y., Yukawa H.. 1993b; Genomic organization of the biotin biosynthetic genes of coryneform bacteria: cloning and sequencing of the bioA - bioD genes from Brevibacterium flavum . DNA Seq4:177–184
    [Google Scholar]
  38. Hermann T., Pfefferle W., Baumann C., Busker E., Schaffer S., Bott M., Sahm H., Dusch N., Kalinowski J.. other authors 2001; Proteome analysis of Corynebacterium glutamicum . Electrophoresis22:1712–1723
    [Google Scholar]
  39. Hoischen C., Krämer R.. 1989; Evidence for an efflux carrier system involved in the secretion of glutamate by Corynebacterium glutamicum . Arch Microbiol151:342–347
    [Google Scholar]
  40. Hüser A. T., Chassagnole C., Lindley N. D., Merkamm M., Guyonvarch A., Elisáková V., Pátek M., Kalinowski J., Brune I.. other authors 2005; Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol71:3255–3268
    [Google Scholar]
  41. Inui M., Murakami S., Okino S., Kawaguchi H., Vertès A. A., Yukawa H.. 2004; Metabolic analysis of Corynebacterium glutamicum during lactate and succinate production under oxygen deprivation conditions. J Mol Microbiol Biotechnol7:182–196
    [Google Scholar]
  42. Ishige T., Krause M., Bott M., Wendisch V. F., Sahm H.. 2003; The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol185:4519–4529
    [Google Scholar]
  43. Jäger W., Peters-Wendisch P. G., Kalinowski J., Pühler A.. 1996; A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins. Arch Microbiol166:76–82
    [Google Scholar]
  44. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J.. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol104:5–25
    [Google Scholar]
  45. Keilhauer C., Eggeling L., Sahm H.. 1993; Isoleucine synthesis in Corynebacterium glutamicum : molecular analysis of thr ilvB-ilvN-ilvC operon. J Bacteriol175:5595–5603
    [Google Scholar]
  46. Kikuchi M., Nakao Y.. others 1986; Glutamic acid. In Progress in Industrial Microbiology vol. 24 pp101–106 Edited by Aido K. Amsterdam, The Netherlands: Elsevier;
  47. Kinoshita K., Udaka S., Shimono M.. 1957; Studies on the amino acid fermentation: I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol3:193–205
    [Google Scholar]
  48. Kirchner O., Tauch A.. 2003; Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum . J Biotechnol104:287–299
    [Google Scholar]
  49. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  50. Lee S. J., Moulakakis C., Koning S. M., Hausner W., Thomm M., Boos W.. 2005; TrmB, a sugar sensing regulator of ABC transporter genes in Pyrococcus furiosus exhibits dual promoter specificity and is controlled by different inducers. Mol Microbiol57:1797–1807
    [Google Scholar]
  51. Lee S. J., Surma M., Seitz S., Hausner W., Thomm M., Boos W.. 2007; Differential signal transduction via TrmB, a sugar sensing transcriptional repressor of Pyrococcus furiosus . Mol Microbiol64:1499–1505
    [Google Scholar]
  52. Meers J. L., Tempest D. W., Brown C. M.. 1970; ‘Glutamine (amide) : 2-oxoglutarate amino transferase oxido-reductase (NADP)’ an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol64:187–194
    [Google Scholar]
  53. Merkamm M., Guyonvarch A.. 2001; Cloning of the sodA gene from Corynebacterium melassecola and role of superoxide dismutase in cellular viability. J Bacteriol183:1284–1295
    [Google Scholar]
  54. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  55. Moon M. W., Kim H. J., Oh T. K., Shin C. S., Lee J. S., Kim S. J., Lee J. K.. 2005; Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett244:259–266
    [Google Scholar]
  56. Mortensen L., Dandanell G., Hammer K.. 1989; Purification and characterization of the DeoR repressor of Escherichia coli . EMBO J8:325–331
    [Google Scholar]
  57. Muffler A., Bettermann S., Haushalter M., Hörlein A., Neveling U., Schramm M., Sorgenfrei O.. 2002; Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol98:255–268
    [Google Scholar]
  58. Nachlas M. M., Davidson M. B., Goldberg J. D., Seligman A. M.. 1963; Colorimetric method for the measurement of isocitric dehydrogenase activity. J Lab Clin Med62:148–158
    [Google Scholar]
  59. Nishio Y., Nakamura Y., Kawarabayasi Y., Usuda Y., Kimura E., Sugimoto S., Matsui K., Yamagishi A., Kikuchi H.. other authors 2003; Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens . Genome Res13:1572–1579
    [Google Scholar]
  60. Okino S., Inui M., Yukawa H.. 2005; Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol68:475–480
    [Google Scholar]
  61. Pátek M., Nesvera J., Guyonvarch A., Reyes O., Leblon G.. 2003; Promoters of Corynebacterium glutamicum . J Biotechnol104:311–323
    [Google Scholar]
  62. Peters-Wendisch P. G., Kreutzer C., Kalinowski J., Pátek M., Sahm H., Eikmanns B. J.. 1998; Pyruvate carboxylase from Corynebacterium glutamicum : characterization, expression and inactivation of the pyc gene. Microbiology144:915–927
    [Google Scholar]
  63. Portevin D., de Sousa D'Auria C., Montrozier H., Houssin C., Stella A., Lanéelle M. A., Bardou F., Guilhot C., Daffé M.. 2005; The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem280:8862–8874
    [Google Scholar]
  64. Rey D. A., Pühler A., Kalinowski J.. 2003; The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum . J Biotechnol103:51–65
    [Google Scholar]
  65. Rey D. A., Nentwich S. S., Koch D. J., Rückert C., Pühler A., Tauch A., Kalinowski J.. 2005; The McbR repressor modulated by the effector substance S -adenosylhomocysteine controls directly the transcription of a regulon involved in sulfur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol56:871–887
    [Google Scholar]
  66. Rollin C., Morgant V., Guyonvarch A., Guerquin-Kern J. L.. 1995; 13C-NMR studies of Corynebacterium melassecola metabolic pathways. Eur J Biochem227:488–493
    [Google Scholar]
  67. Rovira A. D., Harris J. R.. 1961; Plant root excretions in relation to the rhizosphere effect. V. The exudation of B-group vitamins. Plant Soil14:199–214
    [Google Scholar]
  68. Roy S., Sahu A., Adhya S.. 2002; Evolution of DNA binding motifs and operators. Gene285:169–173
    [Google Scholar]
  69. Ruffert S., Lambert C., Peter H., Wendisch F., Krämer R.. 1997; Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. Eur J Biochem247:572–580
    [Google Scholar]
  70. Sahm H., Eggeling L., de Graaf A. A.. 2000; Pathway analysis and metabolic engineering in Corynebacterium glutamicum . Biol Chem381:899–910
    [Google Scholar]
  71. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  72. Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase C., Wood H. G.. 1988; Evolutionary conservation among biotin enzymes. J Biol Chem263:6461–6464
    [Google Scholar]
  73. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene145:69–73
    [Google Scholar]
  74. Sedewitz B., Schleifer K. H., Götz F.. 1984; Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum . J Bacteriol160:462–465
    [Google Scholar]
  75. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S.. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol51:873–884
    [Google Scholar]
  76. Silberbach M., Schäfer M., Hüser A. T., Kalinowski J., Pühler A., Krämer B., Burkovski A.. 2005a; Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl Environ Microbiol71:2391–2402
    [Google Scholar]
  77. Silberbach M., Hüser A. T., Kalinowski J., Pühler A., Walter B., Krämer, B., Burkovski A.. 2005b; DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum . J Biotechnol119:357–367
    [Google Scholar]
  78. Soual-Hoebeke E., de Sousa-d'Auria C., Chami M., Baucher M. F., Guyonvarch A., Bayan N., Salim K., Leblon G.. 1999; S-layer protein production by Corynebacterium strains is dependent on the carbon source. Microbiology145:3399–3408
    [Google Scholar]
  79. Stansen C., Uy D., Delaunay S., Eggeling L., Goergen J. L., Wendisch V. F.. 2005; Characterization of a Corynebacterium glutamicum lactate utilisation operon induced during temperature-triggered glutamate production. Appl Environ Microbiol71:5920–5928
    [Google Scholar]
  80. Sullivan J. T., Brown S. D., Yocum R. R., Ronson C. W.. 2001; The bio operon on the acquired symbiosis island of Mesorhizobium sp. strain R7A includes a novel gene involved in pimeloyl-CoA synthesis. Microbiology147:1315–1322
    [Google Scholar]
  81. Tanaka Y., Teramoto H., Inui M., Yukawa H.. 2008a; Regulation of expression of general components of the phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum . Appl Microbiol Biotechnol78:309–318
    [Google Scholar]
  82. Tanaka Y., Okai N., Teramoto H., Inui M., Yukawa H.. 2008b; Regulation of the expression of phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R. Microbiology154:264–274
    [Google Scholar]
  83. Tauch A., Kaiser O., Hain T., Goesmann A., Weisshaar B., Albersmeier A., Bekel T., Bischoff N., Brune I.. other authors 2005; Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol187:4671–4682
    [Google Scholar]
  84. Toh H., Kondo H., Tanabe T.. 1993; Molecular evolution of biotin-dependent carboxylases. Eur J Biochem215:687–696
    [Google Scholar]
  85. Trésaugues L., Collinet B., Minard P., Henckes G., Aufrère R., Blondeau K., Liger D., Zhou C. Z., Janin J.. other authors 2004; Refolding strategies from inclusion bodies in a structural genomics project. J Struct Funct Genomics5:195–204
    [Google Scholar]
  86. Uy D., Delaunay S., Germain P., Engasser J. M., Goergen J. L.. 2003; Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J Biotechnol104:173–184
    [Google Scholar]
  87. Vallino J. J., Stephanopoulos G.. 1994; Carbon flux distributions at the pyruvate branch point in Corynebacterium glutamicum during lysine overproduction. Biotechnol Prog10:320–326
    [Google Scholar]
  88. Wendisch V. F.. 2003; Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol104:273–285
    [Google Scholar]
  89. Wennerhold J., Krug A., Bott M.. 2005; The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem280:40500–40508
    [Google Scholar]
  90. Yasuda K., Jojima T., Suda M., Okino S., Inui M., Yukawa H.. 2007; Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol77:853–860
    [Google Scholar]
  91. Zeng X., Saxild H. H., Switzer R. L.. 2000; Purification and characterization of the DeoR repressor of Bacillus subtilis . J Bacteriol182:1916–1922
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022004-0
Loading
/content/journal/micro/10.1099/mic.0.022004-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error