1887

Abstract

Lactose metabolism is a changeable phenotype in strains of . In this study, we found that ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac clones could be obtained. A gene cluster () involved in the metabolism of lactose and galactose in ATCC 27139 (Lac) and its Lac revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the promoter (), of the two gene clusters was different. The protein sequence identity between the gene cluster and those reported previously for some (Lac) strains was high; namely, 96–100 % identity was found and no premature stop codon was identified. A single point mutation located within the promoter region was also detected for each of the 41 other independently isolated Lac revertants of ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from revealed that the promoter of these six classes of Lac revertants was functional, while that of ATCC 27139 was not. Northern blotting experiments further confirmed that the operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for ATCC 27139. These results suggest that a single point mutation in the promoter was able to restore the transcription of a fully functional operon and cause a phenotype switch from Lac to Lac for . ATCC 27139.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021907-0
2009-03-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/751.html?itemId=/content/journal/micro/10.1099/mic.0.021907-0&mimeType=html&fmt=ahah

References

  1. Ackerson J. W., Gralla J. D.. 1983; In vivo expression of lac promoter variants with altered −10, −35, and spacer sequences. Cold Spring Harb Symp Quant Biol47:473–476
    [Google Scholar]
  2. Alander M., Satokari R., Korpela R., Saxelin M., Vilpponen-Salmela T., Mattila-Sandholm T., von Wright A.. 1999; Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol65:351–354
    [Google Scholar]
  3. Alpert C.-A., Siebers U.. 1997; The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the BglG family of transcriptional antiterminators. J Bacteriol179:1555–1562
    [Google Scholar]
  4. Aoyama T., Takanami M., Ohtsuka E., Taniyama Y., Marumoto R., Sato H., Ikehara M.. 1983; Essential structure of E. coli promoter: effect of spacer length between the two consensus sequences on promoter function. Nucleic Acids Res11:5855–5864
    [Google Scholar]
  5. Aymerich S., Steinmetz M.. 1992; Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc Natl Acad Sci U S A89:10410–10414
    [Google Scholar]
  6. Berman M. L., Landy A.. 1979; Promoter mutations in the transfer RNA gene tyrT of Escherichia coli. Proc Natl Acad Sci U S A76:4303–4307
    [Google Scholar]
  7. Bettenbrock K., Alpert C.-A.. 1998; The gal genes for the Leloir pathway of Lactobacillus casei 64H. Appl Environ Microbiol64:2013–2019
    [Google Scholar]
  8. Bringel F., Hubert J.-C.. 2003; Extent of genetic lesions of the arginine and pyrimidine biosynthetic pathways in Lactobacillus plantarum, L. paraplantarum, L. pentosus, and L. casei: prevalence of CO2-dependent auxotrophs and characterization of deficient arg genes in L. plantarum. Appl Environ Microbiol69:2674–2683
    [Google Scholar]
  9. Bringel F., Hubert J.-C.. 2004; Lactobacilli evolve by cumulative DNA degeneration. Lait84:25–32
    [Google Scholar]
  10. Bull H. J., McKenzie G. J., Hastings P. J., Rosenberg S. M.. 2000; Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination. Genetics154:1427–1437
    [Google Scholar]
  11. Cairns J., Foster P. L.. 1991; Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics128:695–701
    [Google Scholar]
  12. Cavin J. F., Dartois V., Labarre C., Diviès C.. 1999; Cloning of branched chain amino acid biosynthesis genes and assays of α-acetolactate synthase activities in Leuconostoc mesenteroidessubsp. cremoris. Res Microbiol150:189–198
    [Google Scholar]
  13. Chassy B. M., Gibson E., Giuffrida A.. 1976; Evidence for extrachromosomal elements in Lactobacillus. J Bacteriol127:1576–1578
    [Google Scholar]
  14. Chatwin H. M., Summers D. K.. 2001; Monomer–dimer control of the ColE1 Pcer promoter. Microbiology147:3071–3081
    [Google Scholar]
  15. Christensen J. E., Reynolds C. E., Shukla S. K., Reed K. D.. 2004; Rapid molecular diagnosis of Lactobacillus bacteremia by terminal restriction fragment length polymorphism analysis of the 16S rRNA gene. Clin Med Res2:37–45
    [Google Scholar]
  16. Deguchi Y., Morishita T.. 1992; Nutritional requirements in multiple auxotrophic lactic acid bacteria: genetic lesions affecting amino acid biosynthetic pathways in Lactococcus lactis, Enterococcus faecium, and Pediococcus acidilactici. Biosci Biotechnol Biochem56:913–918
    [Google Scholar]
  17. Delorme C., Godon J.-J., Ehrlich S. D., Renault P.. 1993; Gene inactivation in Lactococcus lactis: histidine biosynthesis. J Bacteriol175:4391–4399
    [Google Scholar]
  18. de Vos W. M., Vaughan E. E.. 1994; Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol Rev15:217–237
    [Google Scholar]
  19. Efthymiou C., Hansen P. A.. 1962; An antigenic analysis of Lactobacillus acidophilus. J Infect Dis110:258–267
    [Google Scholar]
  20. Erlandson K. A., Park J.-H., Wissam E. K., Kao H.-H., Basaran P., Brydges S., Batt C. A.. 2000; Dissolution of xylose metabolism in Lactococcus lactis. Appl Environ Microbiol66:3974–3980
    [Google Scholar]
  21. Ezendam J., van Loveren H.. 2008; Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. Br J Nutr99:83–90
    [Google Scholar]
  22. Flickinger J. L., Porter E. V., Chassy B. M.. 1986; Molecular cloning of a plasmid-encoded β-galactosidase from Lactobacillus casei. In Abstracts of the 86th Annual Meeting of the American Society for Microbiology, abstract H-179 p156 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Godon J.-J., Delorme C., Bardowski J., Chopin M.-C., Ehrlich S. D., Renault P.. 1993; Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis. J Bacteriol175:4383–4390
    [Google Scholar]
  24. Gosalbes M. J., Monedero V., Alpert C.-A., Pérez-Martinez G.. 1997; Establishing a model to study regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett148:83–89
    [Google Scholar]
  25. Gosalbes M. J., Monedero V., Pérez-Martínez G.. 1999; Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. J Bacteriol181:3928–3934
    [Google Scholar]
  26. Gosalbes M. J., Esteban C. D., Pérez-Martínez G.. 2002; In vivo effect of mutations in the antiterminator LacT in Lactobacillus casei. Microbiology148:695–702
    [Google Scholar]
  27. Houman F., Diaz-Torres M. R., Wright A.. 1990; Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell62:1153–1163
    [Google Scholar]
  28. Kandler O., Weiss N.. 1986; Genus Lactobacillus. In Bergey's Manual of Systematic Bacteriology vol. 2, 9th edn. pp1063–1065 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  29. Lapierre L., Mollet B., Germond J. E.. 2002; Regulation and adaptive evolution of lactose operon expression in Lactobacillus delbrueckii. J Bacteriol184:928–935
    [Google Scholar]
  30. le Coq D., Lindner C., Krüger S., Steinmetz M., Stülke J.. 1995; New β-glucoside ( bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. J Bacteriol177:1527–1535
    [Google Scholar]
  31. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V.. other authors 2006; Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A103:15611–15616
    [Google Scholar]
  32. Mandecki W., Reznikoff W. S.. 1982; A lac promoter with a changed distance between −10 and −35 regions. Nucleic Acids Res10:903–912
    [Google Scholar]
  33. Mandecki W., Goldman R. A., Powell B. S., Caruthers M. H.. 1985; lac up-promoter mutants with increased homology to the consensus promoter sequence. J Bacteriol164:1353–1355
    [Google Scholar]
  34. Mathews D. H., Sabina J., Zucker M., Turner H.. 1999; Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure. J Mol Biol288:911–940
    [Google Scholar]
  35. McCracken A., Turner M. S., Giffard P., Hafner L. M., Timms P.. 2000; Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch Microbiol173:383–389
    [Google Scholar]
  36. Monedero V., Gosalbes M. J., Pérez-Martinez G.. 1997; Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol179:6657–6664
    [Google Scholar]
  37. Morishita T., Fukada T., Shirota M., Yura T.. 1974; Genetic basis of nutritional requirements in Lactobacillus casei. J Bacteriol120:1078–1084
    [Google Scholar]
  38. Morishita T., Deguchi Y., Yajima M., Sakurai T., Yura T.. 1981; Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. J Bacteriol148:64–71
    [Google Scholar]
  39. Nomura M., Kobayashi M., Ohmomo S., Okamoto T.. 2000; Inactivation of the glutamate decarboxylase gene in Lactococcus lactis subsp. cremoris. Appl Environ Microbiol66:2235–2237
    [Google Scholar]
  40. Ross C., Pybus C., Pedraza-Reyes M., Sung H. M., Yasbin R. E., Robleto E.. 2006; Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol188:7512–7520
    [Google Scholar]
  41. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Schnetz K., Stülke J., Gertz S., Krüger S., Krieg M., Hecker M., Rak B.. 1996; LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol178:1971–1979
    [Google Scholar]
  43. Steele D. F., Jinks-Robertson S.. 1992; An examination of adaptive reversion in Saccharomyces cerevisiae. Genetics132:9–21
    [Google Scholar]
  44. Stefano J. E., Gralla J. D.. 1982; Spacer mutations in the lac ps promoter. Proc Natl Acad Sci U S A79:1069–1072
    [Google Scholar]
  45. Sung H.-M., Yasbin R. E.. 2002; Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis. J Bacteriol184:5641–5653
    [Google Scholar]
  46. Tsai Y.-K., Lin T.-H.. 2006; Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1. J Appl Microbiol100:446–459
    [Google Scholar]
  47. Turchet P., Laurenzano M., Auboiron S., Antoine J. M.. 2003; Effect of fermented milk containing the probiotic Lactobacillus casei DN-114001 on winter infections in free-living elderly subjects: a randomised, controlled pilot study. J Nutr Health Aging7:75–77
    [Google Scholar]
  48. van Rooijen R. J., de Vos W. M.. 1990; Molecular cloning, transcriptional analysis and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J Biol Chem265:18499–18503
    [Google Scholar]
  49. Vaughan E. E., van den Bogaard P. T. C., Catzeddu P., Kuipers O. P., de Vos W. M.. 2001; Activation of silent gal genes in the lac–gal regulon of Streptococcus thermophilus. J Bacteriol183:1184–1194
    [Google Scholar]
  50. Yamada M., Izu H., Nitta T., Kurihara K., Sakurai T.. 1998; High-temperature, nonradioactive primer extension assay for determination of a transcription initiation site. Biotechniques25:72–75
    [Google Scholar]
  51. Yang Z., Lu Z., Wang A.. 2001; Study of adaptive mutations in Salmonella typhimurium by using a super-repressing mutant of a trans regulatory gene purR. Mutat Res484:95–102
    [Google Scholar]
  52. Yang Z., Lu Z., Wang A.. 2006; Adaptive mutations in Salmonella typhimurium phenotypic of purR super-repression. Mutat Res595:107–116
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021907-0
Loading
/content/journal/micro/10.1099/mic.0.021907-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error