1887

Abstract

In , motility and chemotaxis require the expression of , which encodes flagellin. This gene is transcribed by the form of RNA polymerase and is regulated by a group of proteins called transition state regulators (TSRs). Our studies show that transcription is negatively regulated by the transition state regulator ScoC, by binding to its promoter. Furthermore, ScoC, indirectly, also positively regulates by increasing the availability of by downregulating the levels of the anti- -factor FlgM. We further show that the positive regulation by ScoC predominates over the negative regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021899-0
2009-01-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/142.html?itemId=/content/journal/micro/10.1099/mic.0.021899-0&mimeType=html&fmt=ahah

References

  1. Bergara F., Ibarra C., Iwamasa J., Patarroyo J. C., Aguilera R., Marquez-Magana L. M.. 2003; CodY is a nutritional repressor of flagellar gene expression in Bacillus subtilis. J Bacteriol185:3118–3126
    [Google Scholar]
  2. Bertero M. G., Gonzales B., Tarricone C., Ceciliani F., Galizzi A.. 1999; Overproduction and characterization of the Bacillus subtilis anti-sigma factor FlgM. J Biol Chem274:12103–12107
    [Google Scholar]
  3. Bron S.. 1990; Plasmids.. In Molecular Biological Methods for Bacillus pp75–139 Edited by Harwood C. R., Cutting S. M.. New York: Wiley;
    [Google Scholar]
  4. Bruckner R.. 1992; A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene122:187–192
    [Google Scholar]
  5. Caldwell R., Sapolsky R., Weyler W., Maile R. R., Causey S. C., Ferrari E.. 2001; Correlation between Bacillus subtilis scoC phenotype and gene expression determined using microarrays for transcriptome analysis. J Bacteriol183:7329–7340
    [Google Scholar]
  6. Draghici S., Khatri P., Eklund A. C., Szallasi Z.. 2006; Reliability and reproducibility issues in DNA microarray measurements. Trends Genet22:101–109
    [Google Scholar]
  7. Fisher S. H.. 1999; Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference!. Mol Microbiol32:223–232
    [Google Scholar]
  8. Fredrick K., Helmann J. D.. 1996; FlgM is a primary regulator of σ D activity, and its absence restores motility to a sinR mutant. J Bacteriol178:7010–7013
    [Google Scholar]
  9. Hecker M., Volker U.. 1998; Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the σ B regulon. Mol Microbiol29:1129–1136
    [Google Scholar]
  10. Helmann J. D.. 1999; Anti-sigma factors. Curr Opin Microbiol2:135–141
    [Google Scholar]
  11. Henner D. J., Ferrari E., Perego M., Hoch J. A.. 1988; Location of the targets of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream regions of the subtilisin promoter. J Bacteriol170:296–300
    [Google Scholar]
  12. Hughes K. T., Mathee K.. 1998; The anti-sigma factors. Annu Rev Microbiol52:231–286
    [Google Scholar]
  13. Kallio P. T., Fagelson J. E., Hoch J. A., Strauch M. A.. 1991; The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J Biol Chem266:13411–13417
    [Google Scholar]
  14. Kodgire P., Dixit M., Rao K. K.. 2006; ScoC and SinR negatively regulate epr by corepression in Bacillus subtilis. J Bacteriol188:6425–6428
    [Google Scholar]
  15. Kothapalli R., Yoder S. J., Mane S., Loughran T. P. Jr. 2002; Microarray results: how accurate are they?. BMC Bioinformatics3:22
    [Google Scholar]
  16. Liu J., Zuber P.. 1998; A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control σ D-dependent gene expression in Bacillus subtilis. J Bacteriol180:4243–4251
    [Google Scholar]
  17. Mirel D. B., Chamberlin M. J.. 1989; The Bacillus subtilis flagellin gene ( hag) is transcribed by the σ 28 form of RNA polymerase. J Bacteriol171:3095–3101
    [Google Scholar]
  18. Mirel D. B., Lauer P., Chamberlin M. J.. 1994; Identification of flagellar synthesis regulatory and structural genes in a σ D-dependent operon of Bacillus subtilis. J Bacteriol176:4492–4500
    [Google Scholar]
  19. Mirel D. B., Estacio W. F., Mathieu M., Olmsted E., Ramirez J., Marquez-Magana L. M.. 2000; Environmental regulation of Bacillus subtilis σ D-dependent gene expression. J Bacteriol182:3055–3062
    [Google Scholar]
  20. Nicholson W. L., Setlow P.. 1990; Sporulation, germination, and outgrowth. In Molecular Biological Methods for Bacillus pp442–444 Edited by Harwood C. R., Cutting S. M.. New York: Wiley;
    [Google Scholar]
  21. Ordal G. W., Márquez-Magaña L. M., Chamberlin M. J.. 1993; Motility and Chemotaxis. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp765–784 Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Perego M., Hoch J. A.. 1988; Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis. J Bacteriol170:2560–2567
    [Google Scholar]
  23. Ratnayake-Lecamwasam M., Serror P., Wong K. W., Sonenshein A. L.. 2001; Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev15:1093–1103
    [Google Scholar]
  24. Sambrook J., Fritsh E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Shafikhani S. H., Mandic-Mulec I., Strauch M. A., Smith I., Leighton T.. 2002; Postexponential regulation of sin operon expression in Bacillus subtilis. J Bacteriol184:564–571
    [Google Scholar]
  26. Smith I.. 1993; Regulatory proteins that control late-growth developement. . In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp785–800 Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Steinmetz M., Richter R.. 1994; Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene142:79–83
    [Google Scholar]
  28. Strauch M. A., Hoch J. A.. 1992; Control of postexponential gene expression by transition state regulators. In Biology of Bacilli: Application to Industry pp105–121 Edited by Doi R. H., McGloughlin M. Stoneham, MA: Butterworth-Heinemann;
    [Google Scholar]
  29. Strauch M. A., Hoch J. A.. 1993; Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol7:337–342
    [Google Scholar]
  30. Strauch M. A., Spiegelman G. B., Perego M., Johnson W. C., Burbulys D., Hoch J. A.. 1989; The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J8:1615–1621
    [Google Scholar]
  31. Vagner V., Dervyn E., Ehrlich S. D.. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology144:3097–3104
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021899-0
Loading
/content/journal/micro/10.1099/mic.0.021899-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error