1887

Abstract

28 is a Cr(VI)-hyper-resistant bacterium. A Cr(VI)-sensitive mutant was obtained by insertional mutagenesis using EZ-Tn <R6K/KAN-2>Tnp. The mutant strain was impaired in a gene, here named (rganoulphur ompounds), which encoded a hypothetical small protein of unknown function. The gene was located upstream of a gene cluster that encodes the components of the sulphate ABC transporter, and it formed a transcriptional unit with , which encoded the periplasmic binding protein of the transporter. The transcriptional unit was strongly and quickly overexpressed after chromate exposure, suggesting the involvement of in chromate resistance, which was further confirmed by means of a complementation experiment. Phenotype MicroArray (PM) analysis made it possible to assay 1536 phenotypes and also indicated that the gene was involved in the utilization of organosulphur compounds as a sole source of sulphur. This is believed to be the first evidence that plays a role in activating a sulphur starvation response, which is required to cope with oxidative stress induced by chromate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021873-0
2009-01-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/95.html?itemId=/content/journal/micro/10.1099/mic.0.021873-0&mimeType=html&fmt=ahah

References

  1. Ackerley, D. F., Barak, Y., Lynch, S. V., Curtin, J. & Matin, A. ( 2006; ). Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188, 3371–3381.[CrossRef]
    [Google Scholar]
  2. Benov, L., Kredich, N. M. & Fridovich, I. ( 1996; ). The mechanism of the auxotrophy for sulfur-containing amino acids imposed upon Escherichia coli by superoxide. J Biol Chem 271, 21037–21040.[CrossRef]
    [Google Scholar]
  3. Bochner, B. R., Gadzinski, P. & Panomitros, E. ( 2001; ). Phenotype MicroArrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11, 1246–1255.[CrossRef]
    [Google Scholar]
  4. Brown, I. F. & Sister, H. D. ( 1960; ). Mechanisms of fungitoxic action of n-dodecylguanidine acetate. Phytopathology 50, 830–839.
    [Google Scholar]
  5. Brown, S. D., Thompson, M. R., Verberkmoes, N. C., Chourey, K., Shah, M., Zhou, J. Z., Hettich, R. L. & Thompson, D. K. ( 2006; ). Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5, 1054–1071.[CrossRef]
    [Google Scholar]
  6. Cabral, J. P. ( 1991; ). Damage to the cytoplasmic membrane and cell-death caused by dodine (dodecylguanidine monoacetate) in Pseudomonas syringae ATCC 12271. Antimicrob Agents Chemother 35, 341–344.[CrossRef]
    [Google Scholar]
  7. Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-Guzman, J. C. & Moreno-Sanchez, R. ( 2001; ). Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25, 335–347.[CrossRef]
    [Google Scholar]
  8. Cuhel, R. L., Taylor, C. D. & Jannasch, H. W. ( 1981; ). Assimilatory sulfur metabolism in marine microorganisms: characteristics and regulation of sulfate transport in Pseudomonas halodurans and Alteromonas luteo-violaceus. J Bacteriol 147, 340–349.
    [Google Scholar]
  9. De Flora, S. ( 2000; ). Threshold mechanisms and site specificity in chromium(VI) carcinogenesis. Carcinogenesis 21, 533–541.[CrossRef]
    [Google Scholar]
  10. Dwyer, D. J., Kohanski, M. A., Hayete, B. & Collins, J. J. ( 2007; ). Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol 3, 91
    [Google Scholar]
  11. Endoh, T., Habe, H., Nojiri, H., Yamane, H. & Omori, T. ( 2005; ). The σ 54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Mol Microbiol 55, 897–911.
    [Google Scholar]
  12. Fahey, R. C. ( 2001; ). Novel thiols of prokaryotes. Annu Rev Microbiol 55, 333–356.[CrossRef]
    [Google Scholar]
  13. Flemming, C. A., Ferris, F. G., Beveridge, T. J. & Bailey, G. W. ( 1990; ). Remobilization of toxic heavy-metals adsorbed to bacterial wall-clay composites. Appl Environ Microbiol 56, 3191–3203.
    [Google Scholar]
  14. Green, L. S. & Grossman, A. L. ( 1988; ). Changes in sulfate transport characteristics and protein composition of Anacystis nidulans R2 during sulfur deprivation. J Bacteriol 170, 583–587.
    [Google Scholar]
  15. Helbig, K., Bleuel, C., Krauss, G. J. & Nies, D. H. ( 2008; ). Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol 190, 5431–5438.[CrossRef]
    [Google Scholar]
  16. Helinski, D. R., Toukdarian, A. E. & Novick, R. P. ( 1996; ). Replication control and other stable maintenance mechanisms of plasmids. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 2295–2324. Edited by F. C. Neidhardt and others. Washington, DC: ASM Press.
  17. Hu, P., Brodie, E. L., Suzuki, Y., McAdams, H. H. & Andersen, G. L. ( 2005; ). Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187, 8437–8449.[CrossRef]
    [Google Scholar]
  18. Hummerjohann, J., Kuttel, E., Quadroni, M., Ragaller, J., Leisinger, T. & Kertesz, M. A. ( 1998; ). Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. Microbiology 144, 1375–1386.[CrossRef]
    [Google Scholar]
  19. Jacobson, B. L., He, J. J., Vermersch, P. S., Lemon, D. D. & Quiocho, F. A. ( 1991; ). Engineered interdomain disulfide in the periplasmic receptor for sulfate transport reduces flexibility-site-directed mutagenesis and ligand-binding studies. J Biol Chem 266, 5220–5225.
    [Google Scholar]
  20. Jeanjean, R. & Broda, E. ( 1977; ). Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate starvation. Arch Microbiol 114, 19–23.[CrossRef]
    [Google Scholar]
  21. Kahnert, A., Vermeij, P., Wietek, C., James, P., Leisinger, T. & Kertesz, M. A. ( 2000; ). The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313. J Bacteriol 182, 2869–2878.[CrossRef]
    [Google Scholar]
  22. Kertesz, M. A. ( 2000; ). Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 24, 135–175.
    [Google Scholar]
  23. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pbbr1Mcs, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  24. Layer, G., Gaddam, S. A., Yala-Castro, C. N., Choudens, S. O., Lascoux, D., Fontecave, M. & Outten, F. W. ( 2007; ). SufE transfers sulfur from SufS to SufB for iron–sulfur cluster assembly. J Biol Chem 282, 13342–13350.[CrossRef]
    [Google Scholar]
  25. Llagostera, M., Gariddo, S., Guerrero, R. & Barbé, J. ( 1986; ). Induction of SOS genes of Escherichia coli by chromium compounds. Environ Mutagen 8, 571–577.[CrossRef]
    [Google Scholar]
  26. McLean, R. J. C., Beauchemin, D., Clapham, L. & Beveridge, T. J. ( 1990; ). Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Appl Environ Microbiol 56, 3671–3677.
    [Google Scholar]
  27. Mergeay, M. ( 1995; ). Heavy metal resistances in microbial ecosystems. In Molecular Microbial Ecology Manual, pp. 6.1.7.1–6.1.7.17. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruij. Dordrecht: Kluwer.
  28. Miranda, A. T., Gonzalez, M. V., Gonzalez, G., Vargas, E., Campos-Garcia, J. & Cervantes, C. ( 2005; ). Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutat Res 578, 202–209.[CrossRef]
    [Google Scholar]
  29. Mostertz, J., Scharf, C., Hecker, M. & Homuth, G. ( 2004; ). Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150, 497–512.[CrossRef]
    [Google Scholar]
  30. Nies, D. H. ( 2003; ). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27, 313–339.[CrossRef]
    [Google Scholar]
  31. Petrilli, F. L. & De Flora, S. ( 1977; ). Toxicity and mutagenicity of hexavalent chromium compounds in Salmonella typhimurium. Appl Environ Microbiol 33, 805–809.
    [Google Scholar]
  32. Pimentel, B. E., Moreno-Sanchez, R. & Cervantes, C. ( 2002; ). Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol Lett 212, 249–254.[CrossRef]
    [Google Scholar]
  33. Pinto, R., Tang, Q. X., Britton, W. J., Leyh, T. S. & Triccas, J. A. ( 2004; ). The Mycobacterium tuberculosis cysD and cysNC genes form a stress-induced operon that encodes a tri-functional sulfate-activating complex. Microbiology 150, 1681–1686.[CrossRef]
    [Google Scholar]
  34. Ramirez-Diaz, M. I., Diaz-Perez, C., Vargas, E., Riveros-Rosas, H., Campos-Garcia, J. & Cervantes, C. ( 2008; ). Mechanisms of bacterial resistance to chromium compounds. Biometals 21, 321–332.[CrossRef]
    [Google Scholar]
  35. Salunkhe, P., Topfer, T., Buer, J. & Tummler, B. ( 2005; ). Genome-wide transcriptional profiling of the steady-state response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol 187, 2565–2572.[CrossRef]
    [Google Scholar]
  36. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Shen, H. & Wang, Y.-T. ( 1995; ). Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1. Appl Environ Microbiol 61, 2754–2758.
    [Google Scholar]
  38. Shi, X. L. & Dalal, N. S. ( 1990a; ). Evidence for a Fenton-type mechanism for the generation of ·OH radicals in the reduction of Cr(VI) in cellular media. Arch Biochem Biophys 281, 90–95.[CrossRef]
    [Google Scholar]
  39. Shi, X. L. & Dalal, N. S. ( 1990b; ). NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals. FEBS Lett 276, 189–191.[CrossRef]
    [Google Scholar]
  40. Shi, X. L. & Dalal, N. S. ( 1992; ). The role of superoxide radical in chromium (VI)-generated hydroxyl radical: the Cr(VI) Haber–Weiss cycle. Arch Biochem Biophys 292, 323–327.[CrossRef]
    [Google Scholar]
  41. Snyder, S. L., Walker, R. I., MacVittie, T. J. & Sheil, J. M. ( 1978; ). Biologic properties of bacterial lipopolysaccharides treated with chromium chloride. Can J Microbiol 24, 495–501.[CrossRef]
    [Google Scholar]
  42. Suzuki, T., Nojiri, H., Isono, H. & Ochi, T. ( 2004; ). Oxidative damages in isolated rat hepatocytes treated with the organochlorine fungicides captan, dichlofluanid and chlorothalonil. Toxicology 204, 97–107.[CrossRef]
    [Google Scholar]
  43. Thompson, M. R., Verberkmoes, N. C., Chourey, K., Shah, M., Thompson, D. K. & Hettich, R. L. ( 2007; ). Dosage-dependent proteome response of Shewanella oneidensis MR-1 to acute chromate challenge. J Proteome Res 6, 1745–1757.[CrossRef]
    [Google Scholar]
  44. Tralau, T., Vuilleumier, S., Thibault, C., Campbell, B. J., Hart, C. A. & Kertesz, M. A. ( 2007; ). Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa. J Bacteriol 189, 6743–6750.[CrossRef]
    [Google Scholar]
  45. van der Ploeg, J. R., Weiss, M. A., Saller, E., Nashimoto, H., Saito, N., Kertesz, M. A. & Leisinger, T. ( 1996; ). Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 178, 5438–5446.
    [Google Scholar]
  46. Viti, C. & Giovannetti, L. ( 2001; ). The impact of chromium contamination on soil heterotrophic and photosynthetic microorganisms. Ann Microbiol 51, 201–213.
    [Google Scholar]
  47. Viti, C. & Giovannetti, L. ( 2007; ). Bioremediation of soils polluted with hexavalent chromium using bacteria – the challenge. In Environmental Bioremediation Technologies, pp. 57–76. Edited by S. N. Singh & R. D. Tripathi. Berlin: Springer.
  48. Viti, C., Pace, A. & Giovannetti, L. ( 2003; ). Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46, 1–5.[CrossRef]
    [Google Scholar]
  49. Viti, C., Mini, A., Ranalli, G., Lustrato, G. & Giovannetti, L. ( 2006; ). Response of microbial communities to different doses of chromate in soil microcosms. Appl Soil Ecol 34, 125–139.[CrossRef]
    [Google Scholar]
  50. Viti, C., Decorosi, F., Tatti, E. & Giovannetti, L. ( 2007; ). Characterization of chromate-resistant and -reducing bacteria by traditional means and by a high-throughput phenomic technique for bioremediation purposes. Biotechnol Prog 23, 553–559.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021873-0
Loading
/content/journal/micro/10.1099/mic.0.021873-0
Loading

Data & Media loading...

Supplements

Primers used in this study [ PDF] (18 kb) homologues [ PDF] (12 kb) Genetic arrangement downstream of homologues [ PDF] (94 kb)

PDF

Primers used in this study [ PDF] (18 kb) homologues [ PDF] (12 kb) Genetic arrangement downstream of homologues [ PDF] (94 kb)

PDF

Primers used in this study [ PDF] (18 kb) homologues [ PDF] (12 kb) Genetic arrangement downstream of homologues [ PDF] (94 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error