1887

Abstract

is a chemotactic bacterium that has three CheV proteins in its predicted chemotaxis signal transduction system. CheV proteins contain both CheW- and response-regulator-like domains. To determine the function of these proteins, we developed a fixed-time diffusion method that would quantify bacterial direction change without needing to define particular behaviours, to deal with the many behaviours that swimming exhibit. We then analysed mutants that had each gene deleted individually and found that the behaviour of each mutant differed substantially from wild-type and the other mutants. and mutants displayed smooth swimming behaviour, consistent with decreased cellular CheY-P, similar to a mutant. In contrast, the mutation had the opposite effect and the mutant cells appeared to change direction frequently. Additional analysis showed that the mutants displayed aberrant behaviour as compared to the wild-type in the soft-agar chemotaxis assay. The soft-agar assay phenotype was less extreme compared to that seen in the fixed-time diffusion model, suggesting that the mutants are able to partially compensate for their defects under some conditions. Each mutant furthermore had defects in mouse colonization that ranged from severe to modest, consistent with a role in chemotaxis. These studies thus show that the CheV proteins each differently affect swimming behaviour.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021857-0
2009-04-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1181.html?itemId=/content/journal/micro/10.1099/mic.0.021857-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Ling L. S., Moir D. T., King B. L., Brown E. D., Doig P. C., Smith D. R., Noonan B., Guild B. C.. other authors 1999; Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori . Nature397:176–180
    [Google Scholar]
  2. Beier D., Spohn G., Rappuoli R., Scarlato V.. 1997; Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. J Bacteriol179:4676–4683
    [Google Scholar]
  3. Berg H. C., Brown D. A.. 1972; Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature239:500–504
    [Google Scholar]
  4. Blair D. F.. 1995; How bacteria sense and swim. Annu Rev Microbiol49:489–522
    [Google Scholar]
  5. Boukhvalova M. S., Dahlquist F. W., Stewart R. C.. 2002; CheW binding interactions with CheA and Tar – importance for chemotaxis signaling in Escherichia coli . J Biol Chem277:22251–22259
    [Google Scholar]
  6. Butler S. M., Camilli A.. 2004; Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae . Proc Natl Acad Sci U S A101:5018–5023
    [Google Scholar]
  7. Castillo A. R., Arevalo S. S., Woodruff A. J., Ottemann K. M.. 2008; Experimental analysis of Helicobacter pylori transcriptional terminators suggests this microbe uses both intrinsic and factor-dependent termination. Mol Microbiol67:155–170
    [Google Scholar]
  8. Clegg D. O., Koshland D. E.. 1984; The role of a signaling protein in bacterial sensing: behavioral effects of increased gene expression. Proc Natl Acad Sci U S A81:5056–5060
    [Google Scholar]
  9. Eaton K. A., Morgan D. R., Krakowka S.. 1992; Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori . J Med Microbiol37:123–127
    [Google Scholar]
  10. Eaton K. A., Suerbaum S., Josenhans C., Krakowka S.. 1996; Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun64:2445–2448
    [Google Scholar]
  11. Einstein A.. 1905; On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annalen der Physik17:549–560
    [Google Scholar]
  12. Foynes S., Dorrell N., Ward S. J., Stabler R. A., McColm A. A., Rycroft A. N., Wren B. W.. 2000; Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect Immun68:2016–2023
    [Google Scholar]
  13. Frye J., Karlinsey J. E., Felise H. R., Marzolf B., Dowidar N., McClelland M., Hughes K. T.. 2006; Identification of new flagellar genes of Salmonella enterica serovar Typhimurium . J Bacteriol188:2233–2243
    [Google Scholar]
  14. Garrity L. F., Ordal G. W.. 1995; Chemotaxis in Bacillus subtilis : how bacteria monitor environmental signals. Pharmacol Ther68:87–104
    [Google Scholar]
  15. Jimenez-Pearson M. A., Delany I., Scarlato V., Beier D.. 2005; Phosphate flow in the chemotactic response system of Helicobacter pylori . Microbiology151:3299–3311
    [Google Scholar]
  16. Karatan E., Saulmon M. M., Bunn M. W., Ordal G. W.. 2001; Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J Biol Chem276:43618–43626
    [Google Scholar]
  17. Lee A., O'Rourke J., Ungria M. C. D., Robertson B., Daskalopoulos G., Dixon M. F.. 1997; A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. Gastroenterology112:1386–1397
    [Google Scholar]
  18. Liu J. D., Parkinson J. S.. 1991; Genetic evidence for interaction between the CheW and Tsr proteins during chemoreceptor signaling by Escherichia coli . J Bacteriol173:4941–4951
    [Google Scholar]
  19. McClelland M., Sanderson K. E., Spieth J., Clifton S. W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M.. other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature413:852–856
    [Google Scholar]
  20. McGee D. J., Langford M. L., Watson E. L., Carter J. E., Chen Y. T., Ottemann K. M.. 2005; Colonization and inflammation deficiencies in Mongolian gerbils infected by Helicobacter pylori chemotaxis mutants. Infect Immun73:1820–1827
    [Google Scholar]
  21. Metzler R., Klafter J.. 2000; The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Rep399:1–77
    [Google Scholar]
  22. Ottemann K. M., Lowenthal A. C.. 2002; Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect Immun70:1984–1990
    [Google Scholar]
  23. Parkinson J. S.. 1978; Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. J Bacteriol135:45–53
    [Google Scholar]
  24. Pittman M. S., Goodwin M., Kelly D. J.. 2001; Chemotaxis in the human gastric pathogen Helicobacter pylori : different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. Microbiology147:2493–2504
    [Google Scholar]
  25. Rao C. V., Glekas G. D., Ordal G. W.. 2008; The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol16:480–487
    [Google Scholar]
  26. R Development Core Team 2005; R: a Language and Environment For Statistical Computing Vienna, Austria: R Foundation for Statistical Computing;
  27. Rosario M. M., Fredrick K. L., Ordal G. W., Helmann J. D.. 1994; Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs. J Bacteriol176:2736–2739
    [Google Scholar]
  28. Szurmant H., Ordal G. W.. 2004; Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev68:301–319
    [Google Scholar]
  29. Terry K., Williams S. M., Connolly L., Ottemann K. M.. 2005; Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect Immun73:803–811
    [Google Scholar]
  30. Terry K., Go A. C., Ottemann K. M.. 2006; Proteomic mapping of a suppressor of non-chemotactic cheW mutants reveals that Helicobacter pylori contains a new chemotaxis protein. Mol Microbiol61:871–882
    [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  32. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S.. other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori . Nature388:539–547
    [Google Scholar]
  33. Wang Q., Mariconda S., Suzuki A., McClelland M., Harshey R. M.. 2006; Uncovering a large set of genes that affect surface motility in Salmonella enterica serovar Typhimurium . J Bacteriol188:7981–7984
    [Google Scholar]
  34. Wolfe A. J., Berg H. C.. 1989; Migration of bacteria in semisolid agar. Proc Natl Acad Sci U S A86:6973–6977
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021857-0
Loading
/content/journal/micro/10.1099/mic.0.021857-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error