1887

Abstract

A series of integrative and versatile broad-host-range promoter-probe vectors carrying reporter genes encoding green fluorescent protein (GFP), catechol 2,3-dioxygenase (XylE) or -galactosidase (LacZ) were constructed for use in methanotrophs. These vectors facilitated the measurement of promoter activity in methanotrophs under defined growth conditions. They were tested by constructing transcriptional fusions between the soluble methane monooxygenase (sMMO) promoter or particulate methane monooxygenase (pMMO) promoter from and the reporter genes. Reporter gene activity was measured under high- and low-copper growth conditions and the data obtained closely reflected transcriptional regulation of the sMMO or pMMO operon, thus demonstrating the suitability of these vectors for assessing promoter activity in methanotrophs. When -galactosidase expression was coupled with the fluorogenic substrate 4-methylumbelliferyl --glucuronide it yielded a sensitive and powerful screening system for detecting cells expressing this reporter gene. These data were substantiated with independent experiments using RT-PCR and RNA dot-blot analysis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021816-0
2009-03-01
2020-05-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/761.html?itemId=/content/journal/micro/10.1099/mic.0.021816-0&mimeType=html&fmt=ahah

References

  1. Ali H., Scanlan J., Dumont M. G., Murrell J. C.. 2006; Duplication of the mmoX gene in Methylosinus sporium: cloning, sequencing and mutational analysis. Microbiology152:2931–2942
    [Google Scholar]
  2. Barta T. M., Hanson R. S.. 1993; Genetics of methane and methanol oxidation in gram-negative methylotrophic bacteria. Antonie Van Leeuwenhoek64:109–120
    [Google Scholar]
  3. Brusseau G. A., Tsien H. C., Hanson R. S., Wackett L. P.. 1990; Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation1:19–29
    [Google Scholar]
  4. Casadaban M. J., Chou J., Cohen S. N.. 1980; In-vitro gene fusions that join an enzymatically active β-galactosidase segment to amino terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol143:971–980
    [Google Scholar]
  5. Choi D. W., Kunz R. C., Boyd E. S., Semrau J. D., Antholine W. E., Han J. I., Zahn J. A., Boyd J. M., de la Mora A. M., DiSpirito A. A.. 2003; The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH : quinone oxidoreductase complex from Methylococcus capsulatus Bath. J Bacteriol185:5755–5764
    [Google Scholar]
  6. Csaki R., Bodrossy L., Klem J., Murrell J. C., Kovacs K. L.. 2003; Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiology149:1785–1795
    [Google Scholar]
  7. Domian I. J., Reisenauer A., Shapiro L.. 1999; Feedback control of a master bacterial cell-cycle regulator. Proc Natl Acad Sci U S A96:6648–6653
    [Google Scholar]
  8. Gilbert B., McDonald I. R., Finch R., Stafford G. P., Nielsen A. K., Murrell J. C.. 2000; Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Appl Environ Microbiol66:966–975
    [Google Scholar]
  9. Graham D. W., Korich D. G., Leblanc R. P., Sinclair N. A., Arnold R. G.. 1992; Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol58:2231–2236
    [Google Scholar]
  10. Herrero M., de Lorenzo V., Timmis K. N.. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol172:6557–6567
    [Google Scholar]
  11. Kataeva I. A., Golovleva L. A.. 1990; Catechol 2,3-dioxygenases from Pseudomonas aeruginosa 2x. Methods Enzymol188:115–121
    [Google Scholar]
  12. Linn T., St Pierre R.. 1990; Improved vector system for constructing transcriptional fusions that ensures independent translation of LacZ. J Bacteriol172:1077–1084
    [Google Scholar]
  13. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218
    [Google Scholar]
  14. Marx C. J., Lidstrom M. E.. 2001; Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology147:2065–2075
    [Google Scholar]
  15. Miller J. H.. 1977; Experiment 48. Assay of β-Galactosidase. In Experiments in Molecular Genetics pp352–355 Edited by Miller J. H. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Murrell J. C.. 1992; Genetics and molecular biology of methanotrophs. FEMS Microbiol Rev8:233–248
    [Google Scholar]
  17. Murrell J. C.. 1994; Molecular genetics of methane oxidation. Biodegradation5:145–159
    [Google Scholar]
  18. Nielsen A. K., Gerdes K., Degn H., Murrell J. C.. 1996; Regulation of bacterial methane oxidation: transcription of the soluble methane monooxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions. Microbiology142:1289–1296
    [Google Scholar]
  19. Nielsen A. K., Gerdes K., Murrell J. C.. 1997; Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol Microbiol25:399–409
    [Google Scholar]
  20. Oguiza J. A., Gallegos M. T., Chaney M. K., Cannon W. V., Buck M.. 1999; Involvement of the σ N DNA-binding domain in open complex formation. Mol Microbiol33:873–885
    [Google Scholar]
  21. Prior S. D.. 1985; The effect of copper ions on methane oxidation by obligate methylotroph Methylococcus capsulatus (Bath) PhD thesis University of; Warwick, UK:
    [Google Scholar]
  22. Reitzer L., Schneider B. L.. 2001; Metabolic context and possible physiological themes of σ 54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev65:422
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Schafer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A.. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene145:69–73
    [Google Scholar]
  25. Schweizer H. P., Chuanchuen R.. 2001; Small broad-host-range lacZ operon fusion vector with low background activity. Biotechniques31:12581260–1262
    [Google Scholar]
  26. Silhavy T. J., Beckwith J. R.. 1985; Uses of lac fusions for the study of biological problems. Microbiol Rev49:398–418
    [Google Scholar]
  27. Smith T. J., Dalton H.. 2004; Biocatalysis by methane monooxygenase and its implications for the petroleum industry. Stud Surf Sci Catal151:177–192
    [Google Scholar]
  28. Stafford G. P., Scanlan J., McDonald I. R., Murrell J. C.. 2003; rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. Microbiology149:1771–1784
    [Google Scholar]
  29. Stanley S. H., Prior S. D., Leak D. J., Dalton L. H.. 1983; Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane oxidizing organisms: studies in batch and continuous cultures. Biotechnol Lett5:487–492
    [Google Scholar]
  30. Stolyar S., Costello A. M., Peeples T. L., Lidstrom M. E.. 1999; Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology145:1235–1244
    [Google Scholar]
  31. Stolyar S., Franke M., Lidstrom M. E.. 2001; Expression of individual copies of Methylococcus capsulatus Bath particulate methane monooxygenase genes. J Bacteriol183:1810–1812
    [Google Scholar]
  32. Theisen A. R., Ali M. H., Radajewski S., Dumont M. G., Dunfield P. F., McDonald I. R., Dedysh S. N., Miguez C. B., Murrell J. C.. 2005; Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol58:682–692
    [Google Scholar]
  33. Thomas D. Y., Dubuc G., Narang S.. 1982; Escherichia coli plasmid vectors containing synthetic translational initiation sequences and ribosome binding sites fused with the lacZ gene. Gene19:211–219
    [Google Scholar]
  34. Whittenbury R., Phillips K. C., Wilkinson J. F.. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol61:205–218
    [Google Scholar]
  35. Zukowski M. M., Gaffney D. F., Speck D., Kauffmann M., Findeli A., Wisecup A., Lecocq J. P.. 1983; Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci U S A80:1101–1105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021816-0
Loading
/content/journal/micro/10.1099/mic.0.021816-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error