1887

Abstract

Swarming is a social phenomenon that enables motile bacteria to move co-ordinately over solid surfaces. The molecular basis regulating this process is not completely known and may vary among species. Insertional mutagenesis of a swarming-proficient strain was performed, by use of the transposon mini-Tn, to identify novel genetic determinants of swarming that are dispensable for flagellation, swimming motility, chemotaxis and active growth. Among the 67 non-swarming mutants obtained, six were selected that showed no defect in flagellar assembly and function, chemotaxis or growth rate. Sequence analysis of DNA flanking the transposon insertion led to the identification of previously uncharacterized genes that are involved in the development of swarming colonies by and that are highly conserved in all members of the group. These genes encode non-flagellar proteins with putative activity as sarcosine oxidase, catalase-2, amino acid permease, ATP-binding cassette transporter, dGTP triphosphohydrolase and acetyltransferase. Functional analysis of two of the isolated mutants demonstrated that swarming differentiation depends on the intracellular levels of the osmoprotectant glycine betaine and on the quantity of synthesized phenazine secondary metabolites. The finding that proteins involved in diverse physiological processes have a role in swarming motility underlines the complexity of the molecular mechanisms governing this behaviour in

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021741-0
2009-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/912.html?itemId=/content/journal/micro/10.1099/mic.0.021741-0&mimeType=html&fmt=ahah

References

  1. Allison C., Jones P., Coleman N., Hughes C. 1992a; Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60:4740–4746
    [Google Scholar]
  2. Allison C., Lai H. C., Hughes C. 1992b; Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis . Mol Microbiol 6:1583–1591
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  4. Arantes O., Lereclus D. 1991; Construction of cloning vectors for Bacillus thuringiensis . Gene 108:115–119
    [Google Scholar]
  5. Aravind L., Koonin E. V. 1998; The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci 23:469–472
    [Google Scholar]
  6. Belas M. R., Colwell R. R. 1982; Adsorption kinetics of laterally and polarly flagellated Vibrio. J Bacteriol 151:1568–1580
    [Google Scholar]
  7. Callegan M. C., Novosad B. D., Ramirez R., Ghelardi E., Senesi S. 2006; Role of swarming migration in the pathogenesis of Bacillus endophthalmitis. Invest Ophthalmol Vis Sci 47:4461–4467
    [Google Scholar]
  8. Chen Z. W., Hassan-Abdulah A., Zhao G., Jorns M. S., Mathews F. S. 2006; Heterotetrameric sarcosine oxidase: structure of a diflavin metalloenzyme at 1.85 Å resolution. J Mol Biol 360:1000–1018
    [Google Scholar]
  9. Chin-A-Woeng T. F. C., Bloemberg G. V., Lugtenberg B. J. J. 2003; Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523
    [Google Scholar]
  10. Cho Y. H., Lee E. J., Roe J. H. 2000; A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor . Mol Microbiol 35:150–160
    [Google Scholar]
  11. Chugani S. A., Whiteley M., Lee K. M., D'Argenio D., Manoil C., Greenberg E. P. 2001; QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 98:2752–2757
    [Google Scholar]
  12. Dick H., Murray R. G., Walmsley S. 1985; Swarmer cell differentiation of Proteus mirabilis in fluid media. Can J Microbiol 31:1041–1050
    [Google Scholar]
  13. Douglas C. W., Bisset K. A. 1976; Development of concentric zones in the Proteus swarm colony. J Med Microbiol 9:497–500
    [Google Scholar]
  14. Engelmann S., Lindner C., Hecker M. 1995; Cloning, nucleotide sequence, and regulation of katE encoding a sigma B-dependent catalase in Bacillus subtilis . J Bacteriol 177:5598–5605
    [Google Scholar]
  15. Fraser G. M., Hughes C. 1999; Swarming motility. Curr Opin Microbiol 2:630–635
    [Google Scholar]
  16. Ghelardi E., Celandroni F., Salvetti S., Beecher D. J., Gominet M., Lereclus D., Wong A. C. L., Senesi S. 2002; Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis . J Bacteriol 184:6424–6433
    [Google Scholar]
  17. Ghelardi E., Celandroni F., Salvetti S., Ceragioli M., Beecher D. J., Senesi S., Wong A. C. L. 2007; Swarming behavior and hemolysin BL secretion in Bacillus cereus . Appl Environ Microbiol 73:4089–4093
    [Google Scholar]
  18. Gominet M., Slamti L., Gilois N., Rose M., Lereclus D. 2001; Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol 40:963–975
    [Google Scholar]
  19. Harshey R. M. 2003; Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273
    [Google Scholar]
  20. Harshey R. M., Matsuyama T. 1994; Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91:8631–8635
    [Google Scholar]
  21. Hsueh Y. H., Somers E. B., Lereclus D., Ghelardi E., Wong A. C. L. 2007; Biosurfactant production and surface translocation are regulated by PlcR in Bacillus cereus ATCC 14579 under low-nutrient conditions. Appl Environ Microbiol 73:7225–7231
    [Google Scholar]
  22. Kaiser D. 2007; Bacterial swarming: a re-examination of cell-movement patterns. Curr Biol 17:R561–R570
    [Google Scholar]
  23. Kearns D. B., Chu F., Rudner R., Losick R. 2004; Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52:357–369
    [Google Scholar]
  24. Kim W., Surette M. G. 2004; Metabolic differentiation in actively swarming Salmonella . Mol Microbiol 54:702–714
    [Google Scholar]
  25. Kim Y., Lew C. M., Gralla J. D. 2006; Escherichia coli pfs transcription: regulation and proposed roles in autoinducer-2 synthesis and purine excretion. J Bacteriol 188:7457–7463
    [Google Scholar]
  26. Kirov S. M., Castrisios M., Shaw J. G. 2004; Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect Immun 72:1939–1945
    [Google Scholar]
  27. Köhler T., Curty L. K., Barja F., van Delden C., Pechère J. C. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996
    [Google Scholar]
  28. Koyama Y., Yamamoto-Otake H., Suzuki M., Nakano E. 1991; Cloning and expression of the sarcosine oxidase gene from Bacillus sp. NS-129 in Escherichia coli . Agric Biol Chem 55:1259–1263
    [Google Scholar]
  29. Lereclus D., Arantes O., Chaufaux J., Lecadet M. M. 1989; Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis . FEMS Microbiol Lett 51:211–217
    [Google Scholar]
  30. Liu J. H., Lai M. J., Ang S., Shu J. C., Soo P. C., Horng Y. T., Yi W. C., Lai H. C., Luh K. T. other authors 2000; Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens . J Biomed Sci 7:475–483
    [Google Scholar]
  31. Lucht J. M., Bremer E. 1994; Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system ProU. FEMS Microbiol Rev 14:3–20
    [Google Scholar]
  32. Macfarlane S., Hopkins M. J., Macfarlane G. T. 2001; Toxin synthesis and mucin breakdown are related to swarming phenomenon in Clostridium septicum . Infect Immun 69:1120–1126
    [Google Scholar]
  33. Maddula V. S. R. K., Pierson E. A., Pierson L. S. III 2008; Altering the ratio of phenazines in Pseudomonas chlororaphis ( aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190:2759–2766
    [Google Scholar]
  34. Mariconda S., Wang Q., Harshey R. M. 2006; A mechanical role for the chemotaxis system in swarming motility. Mol Microbiol 60:1590–1602
    [Google Scholar]
  35. Meury J. 1988; Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli . Arch Microbiol 149:232–239
    [Google Scholar]
  36. Østerås M., Boncompagni E., Vincent N., Poggi M. C., Le Rudulier D. 1998; Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline- O-sulfate is metabolized into glycine betaine. Proc Natl Acad Sci U S A 95:11394–11399
    [Google Scholar]
  37. Price-Whelan A., Dietrich L. E. P., Newman D. K. 2006; Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78
    [Google Scholar]
  38. Rasko D. A., Altherr M. R., Han C. S., Ravel J. 2005; Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329
    [Google Scholar]
  39. Rather P. N. 2005; Swarmer cell differentiation in Proteus mirabilis . Environ Microbiol 7:1065–1073
    [Google Scholar]
  40. Reimmann C., Ginet N., Michel L., Keel C., Michaux P., Krishnapillaia V., Zala M., Heurlier K., Triandafillu K. other authors 2002; Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932
    [Google Scholar]
  41. Salvetti S., Ghelardi E., Celandroni F., Ceragioli M., Giannessi F., Senesi S. 2007; FlhF, a SRP-like GTPase, is involved in the regulation of flagellar arrangement, motility behaviour, and protein secretion in Bacillus cereus . Microbiology 153:2541–2552
    [Google Scholar]
  42. Senesi S., Celandroni F., Salvetti S., Beecher D. J., Wong A. C. L., Ghelardi E. 2002; Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiology 148:1785–1794
    [Google Scholar]
  43. Senesi S., Ghelardi E., Celandroni F., Salvetti S., Parisio E., Galizzi A. 2004; Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus. J Bacteriol 186:1158–1164
    [Google Scholar]
  44. Shin S., Park C. 1995; Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702
    [Google Scholar]
  45. Smith L. T., Pocard J. A., Bernard T., Le Rudulier D. 1988; Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti . J Bacteriol 170:3142–3149
    [Google Scholar]
  46. Steinmetz M., Richter R. 1994; Easy cloning of mini-Tn 10 insertions from the Bacillus subtilis chromosome. J Bacteriol 176:1761–1763
    [Google Scholar]
  47. Von Ossowski I., Mulvey M. R., Leco P. A., Borys A., Loewen P. C. 1991; Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol 173:514–520
    [Google Scholar]
  48. Wang Q., Frye J. G., McClelland M., Harshey R. M. 2004; Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52:169–187
    [Google Scholar]
  49. Wang Q., Mariconda S., Suzuky A., McClelland M., Harshey R. M. 2006; Uncovering a large set of genes that affect surface motility in Salmonella enterica serovar Typhimurium. J Bacteriol 188:7981–7984
    [Google Scholar]
  50. Wang Y., Dai Y., Zhang Y., Hu Y., Yang B., Chen S. 2007; Effect of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa . Sci China C Life Sci 50:385–391
    [Google Scholar]
  51. Weber A., Kögl S. A., Jung K. 2006; Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli . J Bacteriol 188:7165–7175
    [Google Scholar]
  52. Wurgler S. M., Richardson C. C. 1993; DNA binding properties of the deoxyguanosine triphosphate triphosphohydrolase of Escherichia coli . J Biol Chem 268:20046–20054
    [Google Scholar]
  53. Young G. M., Smith M. J., Minnich S. A., Miller V. L. 1999; The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181:2823–2833
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021741-0
Loading
/content/journal/micro/10.1099/mic.0.021741-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error