Deletion of in Typhimurium generates an attenuated strain with vaccine potential Free

Abstract

The Gram-negative Tol-Pal system of envelope proteins plays a key role in maintaining outer membrane integrity and contributes to the virulence of several pathogens. We have investigated the role of one of these proteins, TolA, in the biology of serovar Typhimurium. Deletion of rendered strain SL1344 more susceptible to killing by bile and human serum. In addition the mutant had impaired membrane integrity and displayed alterations in LPS production. The mutant was highly attenuated in mouse infections via the oral and intravenous routes. Importantly, each phenotype displayed by the mutant was complemented by provision of . The gene therefore contributes to virulence, membrane integrity, LPS production and bile and serum resistance in serovar Typhimurium SL1344. Finally, immunization with the mutant provided significant protection against subsequent challenge with wild-type SL1344. The Tol-Pal system is therefore a potential target in the development of novel attenuated live vaccines against and other Gram-negative pathogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021576-0
2009-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/220.html?itemId=/content/journal/micro/10.1099/mic.0.021576-0&mimeType=html&fmt=ahah

References

  1. Bowe F., Lipps C. J., Tsolis R. M., Groisman E., Heffron F., Kusters J. G. 1998; At least four percent of the Salmonella typhimurium genome is required for fatal infection of mice. Infect Immun 66:3372–3377
    [Google Scholar]
  2. Bullas L. R., Ryu J. I. 1983; Salmonella typhimurium LT2 strains which are r m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 156:471–474
    [Google Scholar]
  3. Crump J. A., Luby S. P., Mintz E. D. 2004; The global burden of typhoid fever. Bull World Health Organ 82:346–353
    [Google Scholar]
  4. Dubuisson J. F., Vianney A., Hugouvieux-Cotte-Pattat N., Lazzaroni J. C. 2005; Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence. Microbiology 151:3337–3347
    [Google Scholar]
  5. Fields P. I., Groisman E. A., Heffron F. 1989; A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:1059–1062
    [Google Scholar]
  6. Fortney K. R., Young R. S., Bauer M. E., Katz B. P., Hood A. F., Munson R. S. Jr, Spinola S. M. 2000; Expression of peptidoglycan-associated lipoprotein is required for virulence in the human model of Haemophilus ducreyi infection. Infect Immun 68:6441–6448
    [Google Scholar]
  7. Gaspar J. A., Thomas J. A., Marolda C. L., Valvano M. A. 2000; Surface expression of O-specific lipopolysaccharide in Escherichia coli requires the function of the TolA protein. Mol Microbiol 38:262–275
    [Google Scholar]
  8. Heilpern A. J., Waldor M. K. 2000; CTX φ infection of Vibrio cholerae requires the tolQRA gene products. J Bacteriol 182:1739–1747
    [Google Scholar]
  9. Hellman J., Roberts J. D. Jr, Tehan M. M., Allaire J. E., Warren H. S. 2002; Bacterial peptidoglycan-associated lipoprotein is released into the bloodstream in gram-negative sepsis and causes inflammation and death in mice. J Biol Chem 277:14274–14280
    [Google Scholar]
  10. Henry T., Pommier S., Journet L., Bernadac A., Gorvel J.-P., Lloubès R. 2004; Improved methods for producing outer membrane vesicles in Gram-negative bacteria. Res Microbiol 155:437–446
    [Google Scholar]
  11. Hoiseth S. K., Stocker B. A. 1981; Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239
    [Google Scholar]
  12. Jones B. D., Nichols W. A., Gibson B. W., Sunshine M. G., Apicella M. A. 1997; Study of the role of the htrB gene in Salmonella typhimurium virulence. Infect Immun 65:4778–4783
    [Google Scholar]
  13. Lazzaroni J. C., Germon P., Ray M. C., Vianney A. 1999; The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol Lett 177:191–197
    [Google Scholar]
  14. Lazzaroni J.-C., Dubuisson J.-F., Vianney A. 2002; The Tol proteins of Escherichia coli and their involvement in the translocation of group A colicins. Biochimie 84:391–397
    [Google Scholar]
  15. Lloubes R., Cascales E., Walburger A., Bouveret E., Lazdunski C., Bernadac A., Journet L. 2001; The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity?. Res Microbiol 152:523–529
    [Google Scholar]
  16. Miller I., Maskell D., Hormaeche C., Johnson K., Pickard D., Dougan G. 1989; Isolation of orally attenuated Salmonella typhimurium following Tn phoA mutagenesis. Infect Immun 57:2758–2763
    [Google Scholar]
  17. Mo E., Peters S. E., Willers C., Maskell D. J., Charles I. G. 2006; Single, double and triple mutants of Salmonella enterica serovar TyphimuriumdegP (htrA), degQ ( hhoA) and degS ( hhoB) have diverse phenotypes on exposure to elevated temperature and their growth in vivo is attenuated to different extents. Microb Pathog 41:174–182
    [Google Scholar]
  18. Murray G. L., Attridge S. R., Morona R. 2003; Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 47:1395–1406
    [Google Scholar]
  19. Murray G. L., Attridge S. R., Morona R. 2006; Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J Bacteriol 188:2735–2739
    [Google Scholar]
  20. Nagy G., Dobrindt U., Hacker J., Emody L. 2004; Oral immunization with an rfaH mutant elicits protection against salmonellosis in mice. Infect Immun 72:4297–4301
    [Google Scholar]
  21. Ohno A., Isii Y., Tateda K., Matumoto T., Miyazaki S., Yokota S., Yamaguchi K. 1995; Role of LPS length in clearance rate of bacteria from the bloodstream in mice. Microbiology 141:2749–2756
    [Google Scholar]
  22. Prouty A. M., Van Velkinburgh J. C., Gunn J. S. 2002; Salmonella enterica serovar Typhimurium resistance to bile: identification and characterization of the tolQRA cluster. J Bacteriol 184:1270–1276
    [Google Scholar]
  23. Schmieger H. 1972; Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119:75–88
    [Google Scholar]
  24. Sturgis J. N. 2001; Organisation and evolution of the tol-pal gene cluster. J Mol Microbiol Biotechnol 3:113–122
    [Google Scholar]
  25. Sun T. P., Webster R. E. 1987; Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli . J Bacteriol 169:2667–2674
    [Google Scholar]
  26. Thomsen L. E., Chadfield M. S., Bispham J., Wallis T. S., Olsen J. E., Ingmer H. 2003; Reduced amounts of LPS affect both stress tolerance and virulence of Salmonella enterica serovar Dublin. FEMS Microbiol Lett 228:225–231
    [Google Scholar]
  27. Vines E. D., Marolda C. L., Balachandran A., Valvano M. A. 2005; Defective O-antigen polymerization in tolA and pal mutants of Escherichia coli in response to extracytoplasmic stress. J Bacteriol 187:3359–3368
    [Google Scholar]
  28. Young K., Silver L. L. 1991; Leakage of periplasmic enzymes from envA1 strains of Escherichia coli . J Bacteriol 173:3609–3614
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021576-0
Loading
/content/journal/micro/10.1099/mic.0.021576-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed