1887

Abstract

Conventional disinfection and sterilization methods are often ineffective with biofilms, which are ubiquitous, hard-to-destroy microbial communities embedded in a matrix mostly composed of exopolysaccharides. The use of gas-discharge plasmas represents an alternative method, since plasmas contain a mixture of charged particles, chemically reactive species and UV radiation, whose decontamination potential for free-living, planktonic micro-organisms is well established. In this study, biofilms were produced using , a Gram-negative bacterium present in soil and water and used in this study as a model organism. Biofilms were subjected to an atmospheric pressure plasma jet for different exposure times. Our results show that 99.6 % of culturable cells are inactivated after a 5 min treatment. The survivor curve shows double-slope kinetics with a rapid initial decline in c.f.u. ml followed by a much slower decline with values that are longer than those for the inactivation of planktonic organisms, suggesting a more complex inactivation mechanism for biofilms. DNA and ATP determinations together with atomic force microscopy and fluorescence microscopy show that non-culturable cells are still alive after short plasma exposure times. These results indicate the potential of plasma for biofilm inactivation and suggest that cells go through a sequential set of physiological and morphological changes before inactivation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021501-0
2009-03-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/724.html?itemId=/content/journal/micro/10.1099/mic.0.021501-0&mimeType=html&fmt=ahah

References

  1. Abramzon, N., Joaquin, J. C., Bray, J. & Brelles-Mariño, G. ( 2006; ). Biofilm destruction by RF high-pressure cold plasma jet. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 34, 1304–1309.[CrossRef]
    [Google Scholar]
  2. Akishev, Y. S., Grushin, M. E., Karal'nik, V. B., Monich, A. E., Pan'kin, M. V., Trushkin, N. I., Kholodenko, V. P., Chugunov, V. A., Zhirkova, N. A. & other authors ( 2005; ). Sterilization/decontaminations of physiological solution and dry surface by non-thermal plasma created in bubbles and jet. In Proceedings of the 2nd International Workshop on Cold Atmospheric Pressure Plasmas, pp. 69–72. ISBN: 908086692X.
  3. Becker, K., Abramzon, N., Panikov, S., Crowe, R., Ricatto, P. J. & Christodoulatos, C. ( 2002; ). Destruction of bacteria using an atmospheric-pressure dielectric capillary electrode discharge plasma. In Proceedings of the 29th International Conference on Plasma Science, Banff, Canada, p. 253. ISBN: 0–7803–7407-X.
  4. Beringer, J. E. ( 1974; ). R factors transfer in Rhizobium leguminosarum. J Gen Microbiol 84, 188–198.[CrossRef]
    [Google Scholar]
  5. Brelles-Mariño, G., Joaquin, J. C., Bray, J. & Abramzon, N. ( 2005; ). Gas discharge plasma as a novel tool for biofilm destruction. In Proceedings of the 2nd International Workshop on Cold Atmospheric Pressure Plasmas, pp. 69–72. ISBN: 908086692X.
  6. Colwell, R. R. & Huq, A. ( 1994; ). Vibrios in the environment: viable but nonculturable Vibrio cholerae. In Vibrio cholerae and Cholera: Molecular Global Perspectives. Edited by T. Kaye. Washington DC: American Society for Microbiology.
  7. Conrads, H. & Schmidt, M. ( 2000; ). Plasma generation and plasma source. Plasma Sources Sci Technol 9, 441–454.[CrossRef]
    [Google Scholar]
  8. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. ( 1995; ). Microbial biofilms. Annu Rev Microbiol 49, 711–745.[CrossRef]
    [Google Scholar]
  9. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  10. Critzer, F. J., Kelly-Wintenberg, K., South, S. L. & Golden, D. A. ( 2007; ). Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. J Food Prot 70, 2290–2296.
    [Google Scholar]
  11. Davies, D. G., Parske, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. & Greenberg, E. P. ( 1998; ). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298.[CrossRef]
    [Google Scholar]
  12. Day, A. P. & Oliver, J. D. ( 2004; ). Changes in membrane fatty acid composition during entry of Vibrio vulnificus in the viable but nonculturable state. J Microbiol 42, 69–73.
    [Google Scholar]
  13. De Kievit, T. R., Gillis, R., Marx, S., Brown, C. & Iglewski, B. H. ( 2001; ). Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67, 1865–1873.[CrossRef]
    [Google Scholar]
  14. Du, M., Chen, J., Zhang, X., Li, A., Li, Y. & Wang, Y. ( 2007; ). Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate. Appl Environ Microbiol 73, 1349–1354.[CrossRef]
    [Google Scholar]
  15. Elder, M. J., Stapleton, F., Evans, E. & Dart, J. K. ( 1995; ). Biofilm-related infections in ophthalmology. Eye 9, 102–109.[CrossRef]
    [Google Scholar]
  16. Ell, S. R. ( 1996; ). Candida, the cancer of silastic. J Laryngol Otol 110, 240–242.
    [Google Scholar]
  17. Farr, S. B. & Kogoma, T. ( 1991; ). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55, 561–585.
    [Google Scholar]
  18. Gallagher, M., Friedman, G., Gutsol, A. & Fridman, A. ( 2005; ). Non-thermal plasma application in air sterilization. In 17th International Symposium on Plasma Chemistry, Toronto, Canada, pp. 1056–1057.
  19. Halfmann, H., Bibinov, N., Wunderlich, J. & Awakowicz, P. ( 2007; ). A double inductively coupled plasma for sterilization of medical devices. J Phys D Appl Phys 40, 4145–4154.[CrossRef]
    [Google Scholar]
  20. Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B. K. & Molin, S. ( 2000; ). Quantification of biofilms structures by the novel computer program COMSTAT. Microbiology 146, 2395–2407.
    [Google Scholar]
  21. Hoyle, B. D. & Costerton, J. W. ( 1991; ). Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37, 91–105.
    [Google Scholar]
  22. ISO ( 1994; ). International Standard, ISO 11134. Sterilization of health care products. Requirements for validation and routine control – industrial moist heat sterilization.
  23. ISO ( 2000; ). International Standard, ISO 14937. Sterilization of health care products. General requirements for characterization of a sterilizing agent and the development, validation and routine control of a sterilization process for medical devices.
  24. Kamgang, J. O., Briandet, R., Herry, J. M., Brisset, J. L. & Naïtali, M. ( 2007; ). Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using a gliding discharge in humid air. J Appl Microbiol 103, 621–628.[CrossRef]
    [Google Scholar]
  25. Kayes, M. M., Critzer, F. J., Kelly-Wintenberg, K., Roth, J. R., Montie, T. C. & Golden, D. A. ( 2007; ). Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma (OAUGDP®). Foodborne Pathog Dis 4, 50–59.[CrossRef]
    [Google Scholar]
  26. Kelly-Wintenberg, K., Montie, T. C., Brickman, C., Roth, J. R. & Tsai, P. P. Y. ( 1998; ). Room temperature sterilization of surfaces and fabrics with one atmosphere uniform glow discharge plasma. J Ind Microbiol Biotechnol 20, 69–74.[CrossRef]
    [Google Scholar]
  27. Kelly-Wintenberg, K., Hodge, A., Montie, T. C., Deleanu, L., Sherman, D. M., Roth, J. R., Tsai, P. & Wadsworth, L. ( 1999; ). Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms. J Vac Sci Technol A 17, 1539–1544.[CrossRef]
    [Google Scholar]
  28. Kelly-Wintenberg, K., Sherman, D. M., Tsai, P. P.-Y., Gadri, R. B., Karakaya, F., Chen, Z., Roth, J. R. & Montie, T. C. ( 2000; ). Air filter sterilization using a one atmosphere uniform glow discharge plasma (the volfilter). IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 28, 64–71.[CrossRef]
    [Google Scholar]
  29. Kolter, R. & Losick, R. ( 1998; ). One for all and all for one. Science 280, 226–227.[CrossRef]
    [Google Scholar]
  30. Laroussi, M. ( 1996; ). Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 24, 1188–1191.[CrossRef]
    [Google Scholar]
  31. Laroussi, M. ( 2002; ). Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 30, 1409–1415.[CrossRef]
    [Google Scholar]
  32. Laroussi, M. ( 2005; ). Low temperature plasma-based sterilization/decontamination of biological matter. In Proceedings of the 2nd International Workshop on Cold Atmospheric Pressure Plasmas, pp. 18–27.
  33. Laroussi, M. & Leipold, F. ( 2004; ). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233, 81–86.[CrossRef]
    [Google Scholar]
  34. Laroussi, M., Alexeff, I. & Kang, W. ( 2000; ). Biological decontamination by non-thermal plasmas. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 28, 184–188.[CrossRef]
    [Google Scholar]
  35. Laroussi, M., Richardson, J. P. & Dobbs, F. C. ( 2001a; ). Biochemical pathways in the interaction of non-equilibrium plasma with bacteria. In Proceedings of ElectroMed 2001, 2nd International Symposium on Nonthermal Medical/Biological Treatments using Electromagnetic Fields, Portsmouth, VA, 20–23 May, 2001, pp. 33–34.
  36. Laroussi, M., Richardson, J. P. & Dobbs, F. C. ( 2001b; ). Biochemical and morphological effects of non-equilibrium atmospheric pressure plasmas on bacteria. In Proceedings of the 15th International Symposium on Plasma Chemistry (ISPC15), Orleans, France, July 9–13, 2001, pp. 729–734.
  37. Leriche, V., Briandet, R. & Carpentier, B. ( 2003; ). Ecology of mixed biofilms subjected daily to a chlorinated alkaline solution: spatial distribution of bacterial species suggests a protective effect of one species to another. Environ Microbiol 5, 64–71.[CrossRef]
    [Google Scholar]
  38. Lerouge, S., Wertheimer, M. R. & Yahia, L'H. ( 2001; ). Plasma sterilization: a review of parameters, mechanisms, and limitations. Plasmas Polym 6, 175–188.[CrossRef]
    [Google Scholar]
  39. Marsh, E. J., Luo, H. & Wang, H. ( 2003; ). A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol Lett 228, 203–210.[CrossRef]
    [Google Scholar]
  40. Matsumoto, S., Terada, A., Aoi, Y., Tsuneda, S., Alpkvist, E., Picioreanu, C. & van Loosdrecht, M. C. M. ( 2007; ). Experimental and simulation analysis of community structure of nitrifying bacteria in a membrane-aerated biofilm. Water Sci Technol 55, 283–290.
    [Google Scholar]
  41. Massol-Deyá, A. A., Whallon, J., Hickey, R. F. & Tiedje, J. M. ( 1995; ). Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater. Appl Environ Microbiol 61, 769–777.
    [Google Scholar]
  42. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S. & other authors ( 1997; ). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703–3711.[CrossRef]
    [Google Scholar]
  43. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M. & Yahia, L. H. ( 2001; ). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226, 1–21.[CrossRef]
    [Google Scholar]
  44. Moisan, M., Barbeau, J., Crevier, M.-C., Pelletier, J., Philip, N. & Saoudi, B. ( 2002; ). Plasma sterilization: methods and mechanisms. Pure Appl Chem 74, 349–358.
    [Google Scholar]
  45. Montie, C., Kelly-Wintenberg, K. & Roth, J. R. ( 2000; ). An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 28, 41–50.[CrossRef]
    [Google Scholar]
  46. Murga, R., Stewart, P. S. & Daly, D. ( 1995; ). Quantitative analysis of biofilm thickness variability. Biotechnol Bioeng 45, 503–510.[CrossRef]
    [Google Scholar]
  47. Oliver, J. D. ( 1993; ). Formation of viable but nonculturable cells. In Starvation in Bacteria, pp. 239–272. Edited by S. Kjelleberg. New York: Plenum Press.
  48. Panikov, N. S., Paduraru, S., Crowe, R., Ricatto, P. J., Christodoulatos, C. & Becker, K. ( 2002; ). Destruction of Bacillus subtilis cells using an atmospheric-pressure capillary plasma electrode discharge plasma. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 30, 1424–1428.[CrossRef]
    [Google Scholar]
  49. Park, B. J., Lee, D. H., Park, J. C., Lee, I. S., Lee, K. Y., Chun, M. S. & Chung, K. H. ( 2003; ). Sterilization using a microwave-induced argon plasma system at atmospheric pressure. Phys Plasmas 10, 4539–4544.[CrossRef]
    [Google Scholar]
  50. Park, B. J., Takatori, K., Lee, M. H., Han, D.-W., Woo, Y. I., Son, H. J., Kim, J. K., Chung, K.-H., Hyun, S. O. & Park, J.-C. ( 2007; ). Escherichia coli sterilization and lipopolysaccharide inactivation using microwave-induced argon plasma at atmospheric pressure. Surf Coat Tech 201, 5738–5741.[CrossRef]
    [Google Scholar]
  51. Picioreanu, C., van Loosdrecht, M. C. M. & Heijnen, J. J. ( 2000; ). Modelling and predicting biofilm structure. In Community Structure and Co-operation in Biofilms, pp. 129–166. Edited by D. G. Allison, P. Gilbert, H. M. Lappin-Scott & M. Wilson. Cambridge, UK: Cambridge University Press.
  52. Purevdorj, D., Igura, N., Ariyada, O. & Hayakawa, I. ( 2003; ). Effect of feed gas composition of gas discharge plasmas on Bacillus pumilus spore mortality. Lett Appl Microbiol 37, 31–34.[CrossRef]
    [Google Scholar]
  53. Roszak, D. B. & Colwell, R. R. ( 1987; ). Survival strategies of bacteria in the natural environment. Microbiol Rev 51, 365–379.
    [Google Scholar]
  54. Russo, D. M., Williams, A., Edwards, A., Posadas, D. M., Finnie, C., Dankert, M., Downie, J. A. & Zorreguieta, A. ( 2006; ). Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J Bacteriol 188, 4474–4486.[CrossRef]
    [Google Scholar]
  55. Saravanan, P., Nancharaiah, Y. V., Venugopalan, V. P., Rao, T. S. & Jayachandran, S. ( 2006; ). Biofilm formation by Pseudoalteromonas ruthenica and its removal by chlorine. Biofouling 22, 371–378.[CrossRef]
    [Google Scholar]
  56. Singh, A. & Singh, H. ( 1982; ). Time-scale and nature of radiation-biological damage: approaches to radiation protection and post-irradiation therapy. Prog Biophys Mol Biol 39, 69–107.[CrossRef]
    [Google Scholar]
  57. Stewart, P. S. ( 2002; ). Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292, 107–113.[CrossRef]
    [Google Scholar]
  58. Stewart, P. S. & Costerton, J. W. ( 2001; ). Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138.[CrossRef]
    [Google Scholar]
  59. Stewart, P. S., Peyton, B. M., Drury, W. J. & Murga, R. ( 1993; ). Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59, 327–329.
    [Google Scholar]
  60. Stoodley, P., Boyle, J. D., Dodds, I. & Lappin-Scott, H. M. ( 1997; ). Consensus model of biofilm structure. In Biofilms: Community Interactions and Control, pp. 1–9. Edited by J. W. T. Wimpenny, P. S. Gilbert, H. M. Lappin-Scott & M. Jones. Cardiff, UK: Bioline.
  61. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002; ). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  62. Tolker Nielsen, T., Brinch, U. C., Ragas, P. C., Andersen, J. B., Jacobsen, C. S. & Molin, S. ( 2000; ). Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182, 6482–6489.[CrossRef]
    [Google Scholar]
  63. Vandervoort, K., Abramzon, N. & Brelles-Mariño, G. ( 2008; ). Plasma interactions with bacterial biofilms as visualized through atomic force microscopy. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 36, 1296–1297.[CrossRef]
    [Google Scholar]
  64. Zimmermann, R., Iturriaga, R. & Becker-Birek, J. ( 1978; ). Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol 36, 926–935.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021501-0
Loading
/content/journal/micro/10.1099/mic.0.021501-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error