1887

Abstract

is a member of the normal human bacterial flora on the skin and other non-sterile body surfaces, but this anaerobic coccus is also an important opportunistic pathogen. SufA was the first proteinase to be isolated and characterized. Many bacterial pathogens interfere with different steps of blood coagulation, and here we describe how purified SufA efficiently and specifically cleaves fibrinogen in human plasma. SufA is both secreted by and associated with the bacterial surface. Successful gene targeting has previously not been performed in anaerobic cocci, but in order to study the role of the SufA that is present at the bacterial surface, we constructed an mutant that expresses a truncated SufA lacking proteolytic activity. In contrast to wild-type bacteria that delayed the coagulation of human plasma, mutant bacteria had no such effect. Wild-type and mutant bacteria adhered to keratinocytes equally well, but in a plasma environment only wild-type bacteria blocked the formation of fibrin networks surrounding adherent bacteria. The effective cleavage of fibrinogen by SufA suggests that the interference with fibrin network formation represents an adaptive mechanism of with potential implications also for pathogenicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021311-0
2009-01-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/238.html?itemId=/content/journal/micro/10.1099/mic.0.021311-0&mimeType=html&fmt=ahah

References

  1. Bals, R. & Wilson, J. M. ( 2003; ). Cathelicidins – a family of multifunctional antimicrobial peptides. Cell Mol Life Sci 60, 711–720.[CrossRef]
    [Google Scholar]
  2. Bowler, P. G. & Davies, B. J. ( 1999; ). The microbiology of infected and noninfected leg ulcers. Int J Dermatol 38, 573–578.[CrossRef]
    [Google Scholar]
  3. Camerer, E., Rottingen, J. A., Gjernes, E., Larsen, K., Skartlien, A. H., Iversen, J. G. & Prydz, H. ( 1999; ). Coagulation factors VIIa and Xa induce cell signaling leading to up-regulation of the egr-1 gene. J Biol Chem 274, 32225–32233.[CrossRef]
    [Google Scholar]
  4. Collet, J. P., Moen, J. L., Veklich, Y. I., Gorkun, O. V., Lord, S. T., Montalescot, G. & Weisel, J. W. ( 2005; ). The αC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis. Blood 106, 3824–3830.[CrossRef]
    [Google Scholar]
  5. de Château, M. & Björck, L. ( 1994; ). Protein PAB, a mosaic albumin-binding bacterial protein representing the first contemporary example of module shuffling. J Biol Chem 269, 12147–12151.
    [Google Scholar]
  6. de Château, M., Holst, E. & Björck, L. ( 1996; ). Protein PAB, an albumin-binding bacterial surface protein promoting growth and virulence. J Biol Chem 271, 26609–26615.[CrossRef]
    [Google Scholar]
  7. Drew, A. F., Liu, H., Davidson, J. M., Daugherty, C. C. & Degen, J. L. ( 2001; ). Wound-healing defects in mice lacking fibrinogen. Blood 97, 3691–3698.[CrossRef]
    [Google Scholar]
  8. Egesten, A., Eliasson, M., Johansson, H. M., Olin, A. I., Morgelin, M., Mueller, A., Pease, J. E., Frick, I. M. & Björck, L. ( 2007; ). The CXC chemokine MIG/CXCL9 is important in innate immunity against Streptococcus pyogenes. J Infect Dis 195, 684–693.[CrossRef]
    [Google Scholar]
  9. Fischetti, V. A. ( 1989; ). Streptococcal M protein: molecular design and biological behavior. Clin Microbiol Rev 2, 285–314.
    [Google Scholar]
  10. Flores, A. E. & Ferrieri, P. ( 1996; ). Molecular diversity among the trypsin resistant surface proteins of group B streptococci. Zentralbl Bakteriol 285, 44–51.[CrossRef]
    [Google Scholar]
  11. Frick, I.-M., Karlsson, C., Mörgelin, M., Olin, A. I., Janjusevic, R., Hammarström, C., Holst, E., de Château, M. & Björck, L. ( 2008; ). Identification of a novel protein promoting the colonization and survival of Finegoldia magna, a bacterial commensal and opportunistic pathogen. Mol Microbiol 70, 695–708.[CrossRef]
    [Google Scholar]
  12. Goto, T., Yamashita, A., Hirakawa, H., Matsutani, M., Todo, K., Ohshima, K., Toh, H., Miyamoto, K., Kuhara, S. & other authors ( 2008; ). Complete genome sequence of Finegoldia magna, an anaerobic opportunistic pathogen. DNA Res 15, 39–47.[CrossRef]
    [Google Scholar]
  13. Hansson, C., Hoborn, J., Moller, A. & Swanbeck, G. ( 1995; ). The microbial flora in venous leg ulcers without clinical signs of infection. Repeated culture using a validated standardised microbiological technique. Acta Derm Venereol 75, 24–30.
    [Google Scholar]
  14. Harris, T. O., Shelver, D. W., Bohnsack, J. F. & Rubens, C. E. ( 2003; ). A novel streptococcal surface protease promotes virulence, resistance to opsonophagocytosis, and cleavage of human fibrinogen. J Clin Invest 111, 61–70.[CrossRef]
    [Google Scholar]
  15. Hunzelmann, N., Hafner, M., Anders, S., Krieg, T. & Nischt, R. ( 1998; ). BM-40 (osteonectin, SPARC) is expressed both in the epidermal and in the dermal compartment of adult human skin. J Invest Dermatol 110, 122–126.[CrossRef]
    [Google Scholar]
  16. Karlsson, C., Andersson, M. L., Collin, M., Schmidtchen, A., Björck, L. & Frick, I. M. ( 2007; ). SufA – a novel subtilisin-like serine proteinase of Finegoldia magna. Microbiology 153, 4208–4218.[CrossRef]
    [Google Scholar]
  17. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  18. Laurens, N., Koolwijk, P. & de Maat, M. P. ( 2006; ). Fibrin structure and wound healing. J Thromb Haemost 4, 932–939.[CrossRef]
    [Google Scholar]
  19. Liotta, L. A. & Stetler-Stevenson, W. G. ( 1990; ). Metalloproteinases and cancer invasion. Semin Cancer Biol 1, 99–106.
    [Google Scholar]
  20. Liu, C., Matsushita, Y., Shimizu, K., Makimura, K. & Hasumi, K. ( 2007; ). Activation of prothrombin by two subtilisin-like serine proteases from Acremonium sp. Biochem Biophys Res Commun 358, 356–362.[CrossRef]
    [Google Scholar]
  21. Mosesson, M. W. ( 2005; ). Fibrinogen and fibrin structure and functions. J Thromb Haemost 3, 1894–1904.[CrossRef]
    [Google Scholar]
  22. Murdoch, D. A. ( 1998; ). Gram-positive anaerobic cocci. Clin Microbiol Rev 11, 81–120.
    [Google Scholar]
  23. Murdoch, D. A. & Shah, H. N. ( 1999; ). Reclassification of Peptostreptococcus magnus (Prevot 1933) Holdeman and Moore 1972 as Finegoldia magna comb. nov. and Peptostreptococcus micros (Prevot 1933) Smith 1957 as Micromonas micros comb. nov. Anaerobe 5, 555–559.[CrossRef]
    [Google Scholar]
  24. Oleksy, A., Golonka, E., Banbula, A., Szmyd, G., Moon, J., Kubica, M., Greenbaum, D., Bogyo, M., Foster, T. J. & other authors ( 2004; ). Growth phase-dependent production of a cell wall-associated elastinolytic cysteine proteinase by Staphylococcus epidermidis. Biol Chem 385, 525–535.
    [Google Scholar]
  25. Persson, K., Russell, W., Morgelin, M. & Herwald, H. ( 2003; ). The conversion of fibrinogen to fibrin at the surface of curliated Escherichia coli bacteria leads to the generation of proinflammatory fibrinopeptides. J Biol Chem 278, 31884–31890.[CrossRef]
    [Google Scholar]
  26. Podbielski, A., Spellerberg, B., Woischnik, M., Pohl, B. & Lütticken, R. ( 1996; ). Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS). Gene 177, 137–147.[CrossRef]
    [Google Scholar]
  27. Rybarczyk, B. J., Lawrence, S. O. & Simpson-Haidaris, P. J. ( 2003; ). Matrix-fibrinogen enhances wound closure by increasing both cell proliferation and migration. Blood 102, 4035–4043.[CrossRef]
    [Google Scholar]
  28. Sahni, A. & Francis, C. W. ( 2000; ). Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 96, 3772–3778.
    [Google Scholar]
  29. Sahni, A., Guo, M., Sahni, S. K. & Francis, C. W. ( 2004; ). Interleukin-1β but not IL-1α binds to fibrinogen and fibrin and has enhanced activity in the bound form. Blood 104, 409–414.[CrossRef]
    [Google Scholar]
  30. Schmidtchen, A., Frick, I. M. & Björck, L. ( 2001; ). Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol Microbiol 39, 708–713.[CrossRef]
    [Google Scholar]
  31. Senior, R. M., Skogen, W. F., Griffin, G. L. & Wilner, G. D. ( 1986; ). Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B. J Clin Invest 77, 1014–1019.[CrossRef]
    [Google Scholar]
  32. Simon, D. & Ferretti, J. J. ( 1991; ). Electrotransformation of Streptococcus pyogenes with plasmid and linear DNA. FEMS Microbiol Lett 66, 219–224.
    [Google Scholar]
  33. Singh, T. M., Kadowaki, M. H., Glagov, S. & Zarins, C. K. ( 1990; ). Role of fibrinopeptide B in early atherosclerotic lesion formation. Am J Surg 160, 156–159.[CrossRef]
    [Google Scholar]
  34. Skogen, W. F., Senior, R. M., Griffin, G. L. & Wilner, G. D. ( 1988; ). Fibrinogen-derived peptide B beta 1-42 is a multidomained neutrophil chemoattractant. Blood 71, 1475–1479.
    [Google Scholar]
  35. Stephens, P., Wall, I. B., Wilson, M. J., Hill, K. E., Davies, C. E., Hill, C. M., Harding, K. G. & Thomas, D. W. ( 2003; ). Anaerobic cocci populating the deep tissues of chronic wounds impair cellular wound healing responses in vitro. Br J Dermatol 148, 456–466.[CrossRef]
    [Google Scholar]
  36. Sun, H. ( 2006; ). The interaction between pathogens and the host coagulation system. Physiology 21, 281–288.[CrossRef]
    [Google Scholar]
  37. Sun, H., Ringdahl, U., Homeister, J. W., Fay, W. P., Engleberg, N. C., Yang, A. Y., Rozek, L. S., Wang, X., Sjöbring, U. & Ginsburg, D. ( 2004; ). Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305, 1283–1286.[CrossRef]
    [Google Scholar]
  38. Tang, Y. Q., Yeaman, M. R. & Selsted, M. E. ( 2002; ). Antimicrobial peptides from human platelets. Infect Immun 70, 6524–6533.[CrossRef]
    [Google Scholar]
  39. Travis, J. & Potempa, J. ( 2000; ). Bacterial proteinases as targets for the development of second-generation antibiotics. Biochim Biophys Acta 1477, 35–50.[CrossRef]
    [Google Scholar]
  40. Weisel, J. W. ( 2005; ). Fibrinogen and fibrin. Adv Protein Chem 70, 247–299.
    [Google Scholar]
  41. Weisel, J. W. & Medved, L. ( 2001; ). The structure and function of the alpha C domains of fibrinogen. Ann N Y Acad Sci 936, 312–327.
    [Google Scholar]
  42. Weisel, J. W. & Nagaswami, C. ( 1992; ). Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J 63, 111–128.[CrossRef]
    [Google Scholar]
  43. Wolberg, A. S. ( 2007; ). Thrombin generation and fibrin clot structure. Blood Rev 21, 131–142.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021311-0
Loading
/content/journal/micro/10.1099/mic.0.021311-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error