1887

Abstract

It is established that , the causative agent of bubonic plague, recently evolved from enteropathogenic by undergoing chromosomal degeneration while acquiring two unique plasmids that facilitate tissue invasion (pPCP) and dissemination by fleabite (pMT). Thereafter, plague bacilli spread from central Asia to sylvatic foci throughout the world. These epidemic isolates exhibit a broad host range including man as opposed to enzootic (pestoides) variants that remain in ancient reservoirs where infection is limited to muroid rodents. Cells of are known to express glucose-6-phosphate dehydrogenase (Zwf) and aspartase (AspA); these activities are not detectable in epidemic due to missense mutations (substitution of proline for serine at amino position 155 of Zwf and leucine for valine at position 363 of AspA). In this study, functional Zwf was found in pestoides strains E, F and G but not seven other enzootic isolates; enzymic activity was associated with retention of serine at amino acid position 155. Essentially, full AspA activity occurred in pestoides isolates where valine (pestoides A, B, C and D) or serine (pestoides E, F, G and I) occupied position 363. Reduced activity occurred in strains Angola and A16, which contained phenylalanine at this position. The but not of purified AspA from strain Angola was significantly reduced. In this context, of the recently described attenuated enzootic microtus biovar encodes active valine at position 363, further indicating that functional AspA is a biomarker for avirulence of in man.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021170-0
2009-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/198.html?itemId=/content/journal/micro/10.1099/mic.0.021170-0&mimeType=html&fmt=ahah

References

  1. Abramov, V. M., Khlebnikov, V. S., Vasiliev, A. M., Kosarev, I. V., Vasilenko, R. N., Kulikova, N. L., Khodyakova, A. V., Evstigneev, V. I., Uversky, V. N. & other authors ( 2007; ). Attachment of LcrV from Yersinia pestis at dual binding sites to human TLR-2 and human IFN-γ receptor. J Proteome Res 6, 2222–2231.[CrossRef]
    [Google Scholar]
  2. Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. & Carniel, E. ( 1999; ). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96, 14043–14048.[CrossRef]
    [Google Scholar]
  3. Achtman, M., Morelli, G., Zhu, P., Wirth, T., Diehl, I., Kusecek, B., Vogler, A. J., Wagner, D. M., Allender, C. J. & other authors ( 2004; ). Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A 101, 17837–17842.[CrossRef]
    [Google Scholar]
  4. Andersson, S. G., Zomorodipour, A., Andersson, J. O., Sicheritz-Pontén, T., Alsmark, U. C., Podowski, R. M., Näslund, A. K., Eriksson, A. S., Winkler, H. H. & Kurland, C. G. ( 1998; ). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140.[CrossRef]
    [Google Scholar]
  5. Anisimov, A. P., Lindler, L. E. & Pier, G. B. ( 2004; ). Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev 17, 434–464.[CrossRef]
    [Google Scholar]
  6. Anisimov, A. P., Panfertsev, E. A., Svetoch, T. E. & Dentovskaya, S. V. ( 2007; ). Variability of the protein sequences of LcrV between epidemic and atypical rhamnose-positive strains of Yersinia pestis. Adv Exp Med Biol 603, 23–27.
    [Google Scholar]
  7. Astrup, T. & Mullertz, S. ( 1952; ). The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys 40, 346–351.[CrossRef]
    [Google Scholar]
  8. Beesley, E. D., Brubaker, R. R., Janssen, W. A. & Surgalla, M. J. ( 1967; ). Pesticins. III. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 94, 19–26.
    [Google Scholar]
  9. Bin Saeed, A. A., Al-Hamdan, N. A. & Fontaine, R. E. ( 2005; ). Plague from eating raw camel liver. Emerg Infect Dis 11, 1456–1457.[CrossRef]
    [Google Scholar]
  10. Bovarnick, M. R. & Miller, J. C. ( 1950; ). Oxidation and transamination of glutamate by typhus rickettsiae. J Biol Chem 184, 661–676.
    [Google Scholar]
  11. Brownlow, W. J. & Wessman, G. E. ( 1960; ). Nutrition of Pasteurella pestis in chemically defined media at temperatures of 36 to 38 C. J Bacteriol 79, 299–304.
    [Google Scholar]
  12. Brubaker, R. R. ( 1968; ). Metabolism of carbohydrates by Pasteurella pseudotuberculosis. J Bacteriol 95, 1698–1705.
    [Google Scholar]
  13. Brubaker, R. R. ( 1969; ). Mutation rate to nonpigmentation in Pasteurella pestis. J Bacteriol 98, 1404–1406.
    [Google Scholar]
  14. Brubaker, R. R. ( 1972; ). Yersinia: biochemistry and genetics of virulence. Curr Top Microbiol Immunol 57, 111–158.
    [Google Scholar]
  15. Brubaker, R. R. ( 1991; ). Factors promoting acute and chronic diseases caused by yersiniae. Clin Microbiol Rev 4, 309–324.
    [Google Scholar]
  16. Brubaker, R. R. ( 2004; ). The recent emergence of plague: a process of felonious evolution. Microb Ecol 47, 293–299.
    [Google Scholar]
  17. Brubaker, R. R. ( 2005; ). Influence of Na+, dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis. Infect Immun 73, 4743–4752.[CrossRef]
    [Google Scholar]
  18. Brubaker, R. R. ( 2007; ). Intermediary metabolism, Na+, the low calcium-response, and acute disease. In The Genus Yersinia: From Genomics to Function, pp. 116–129. Edited by R. D. Perry. New York: Springer.
  19. Brubaker, R. R. & Sulen, A. J. ( 1971; ). Mutations influencing the assimilation of nitrogen by Yersinia pestis. Infect Immun 3, 580–588.
    [Google Scholar]
  20. Brubaker, R. R. & Surgalla, M. J. ( 1962; ). Pesticins II. Production of pesticin I and II. J Bacteriol 84, 539–545.
    [Google Scholar]
  21. Brubaker, R. R., Beesley, E. D. & Surgalla, M. J. ( 1965; ). Pasteurella pestis: role of pesticin I and iron in experimental plague. Science 149, 422–424.[CrossRef]
    [Google Scholar]
  22. Buchrieser, C., Rusniok, C., Frangeul, L., Couve, E., Billault, A., Kunst, F., Carniel, E. & Glaser, P. ( 1999; ). The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect Immun 67, 4851–4861.
    [Google Scholar]
  23. Burrows, T. W. ( 1957; ). Virulence of Pasteurella pestis. Nature 179, 1246–1247.[CrossRef]
    [Google Scholar]
  24. Burrows, T. W. & Bacon, G. A. ( 1958; ). The effects of loss of different virulence determinants on the virulence and immunogenicity of strains of Pasteurella pestis. Br J Exp Pathol 39, 278–291.
    [Google Scholar]
  25. Burrows, T. W. & Bacon, G. W. ( 1960; ). V and W antigens in strains of Pasteurella pseudotuberculosis. Br J Exp Pathol 41, 38–44.
    [Google Scholar]
  26. Carter, P. B. & Collins, F. M. ( 1974; ). Experimental Yersinia enterocolitica infection in mice: kinetics of growth. Infect Immun 9, 851–857.
    [Google Scholar]
  27. Chain, P. S., Carniel, E., Larimer, F. W., Lamerdin, J., Stoutland, P. O., Regala, W. M., Georgescu, A. M., Vergez, L. M., Land, M. L. & other authors ( 2004; ). Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101, 13826–13831.[CrossRef]
    [Google Scholar]
  28. Chain, P. S. G., Hu, P., Malfatti, S. A., Radnedge, L., Larimer, F., Vergez, L. M., Worsham, P., Chu, M. C. & Andersen, G. L. ( 2006; ). Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J Bacteriol 188, 4453–4463.[CrossRef]
    [Google Scholar]
  29. Davies, D. A. L. ( 1961; ). Dideoxysugars of Pasteurella pseudotuberculosis-specific polysaccharides, and the occurrence of ascarylose. Nature 191, 43–44.[CrossRef]
    [Google Scholar]
  30. Deguchi, Y., Yamato, I. & Anraku, U. ( 1990; ). Nucleotide sequence of gltS, the Na+/glutamate symport carrier gene of Escherichia coli. J Biol Chem 265, 21704–21708.
    [Google Scholar]
  31. Deng, W., Burland, V., Plunkett, G. I., 3rd, Boutin, A., Mayhew, G. F., Liss, P., Perna, N. T., Rose, D. J., Mau, B. & other authors ( 2002; ). Genome sequence of Y. pestis KIM. J Bacteriol 184, 4601–4611.[CrossRef]
    [Google Scholar]
  32. Devignat, R. ( 1951; ). Variétés de l'espèce Pasteurella pestis. Nouvelle hypothèse. Bull World Health Organ 4, 247–263.
    [Google Scholar]
  33. Devignat, R. ( 1954; ). Comportement biologique et biochimique de P. pestis et de P. pseudotuberculosis. Bull World Health Organ 10, 463–494.
    [Google Scholar]
  34. Dreyfus, L. A. & Brubaker, R. R. ( 1978; ). Consequences of aspartase deficiency in Yersinia pestis. J Bacteriol 136, 757–764.
    [Google Scholar]
  35. Fan, Z., Luo, Y., Wang, S., Jin, L., Zhou, X., Liu, J., Zhang, Y. & Li, F. ( 1995; ). Microtus brandti plague in the Xilin Gol Grassland was inoffensive to humans. Chin J Control Endemic Dis 10, 56–57 (in Chinese).
    [Google Scholar]
  36. Ferber, D. M. & Brubaker, R. R. ( 1981; ). Plasmids in Yersinia pestis. Infect Immun 31, 839–841.
    [Google Scholar]
  37. Fetherston, J. D. & Perry, R. D. ( 1994; ). The pigmentation locus of Yersinia pestis KIM6+ is flanked by an insertion sequence and includes the structural genes for pesticin sensitivity and HMWP2. Mol Microbiol 13, 697–708.[CrossRef]
    [Google Scholar]
  38. Fetherston, J. D., Schuetze, P. & Perry, R. D. ( 1992; ). Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol 6, 2693–2704.[CrossRef]
    [Google Scholar]
  39. Fetherston, J. D., Lillard, J. W., Jr & Perry, R. D. ( 1995; ). Analysis of the pesticin receptor from Yersinia pestis: role in iron deficient growth and possible regulation by its siderophore. J Bacteriol 177, 1824–1833.
    [Google Scholar]
  40. Finegold, M. J., Petery, R. F., Berendt, R. F. & Adams, H. R. ( 1968; ). Studies on the pathogenesis of plague. Blood coagulation and tissue responses of Macaca mulatta following exposure to aerosols of Pasteurella pestis. Am J Pathol 53, 99–114.
    [Google Scholar]
  41. Fleischmann, R. D., Alland, D., Eisen, J. A., Carpenter, L., White, O., Peterson, J., DeBoy, R., Dodson, R., Gwinn, M. & other authors ( 2002; ). Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184, 5479–5490.[CrossRef]
    [Google Scholar]
  42. Fowler, J. M. & Brubaker, R. R. ( 1994; ). Physiological basis of the low calcium response in Yersinia pestis. Infect Immun 62, 5234–5241.
    [Google Scholar]
  43. Fraenkel, D. G. ( 1968; ). Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase. J Bacteriol 95, 1267–1271.
    [Google Scholar]
  44. Garcia, E., Nedialkov, Y. A., Elliott, J., Motin, V. L. & Brubaker, R. R. ( 1999; ). Molecular characterization of KatY (antigen 5), a thermoregulated chromosomally encoded catalase-peroxidase of Yersinia pestis. J Bacteriol 181, 3114–3122.
    [Google Scholar]
  45. Garcia, E., Worsham, P., Bearden, S., Malfatti, S., Lang, D., Larimer, F., Lindler, L. & Chain, P. ( 2007; ). Pestoides F, an atypical Yersinia pestis strain from the former Soviet Union. Adv Exp Med Biol 603, 17–22.
    [Google Scholar]
  46. Golubov, A., Neubauer, H., Nölting, C., Heesemann, J. & Rakin, A. ( 2004; ). Structural organization of the pFra virulence-associated plasmid of rhamnose-positive Yersinia pestis. Infect Immun 72, 5613–5621.[CrossRef]
    [Google Scholar]
  47. Heesemann, J., Sing, A. & Trülzsch, K. ( 2006; ). Yersinia's stratagem: targeting innate and adaptive immune defense. Curr Opin Microbiol 9, 55–61.[CrossRef]
    [Google Scholar]
  48. Higuchi, K. & Smith, J. L. ( 1961; ). Studies on the nutrition and physiology of Pasteurella pestis. VI. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol 81, 605–608.
    [Google Scholar]
  49. Hinnebusch, B. J., Rudolph, A. E., Cherepanov, P., Dixon, J. D., Schwan, T. G. & Forsberg, A. ( 2002; ). Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735.[CrossRef]
    [Google Scholar]
  50. Hu, P. C. & Brubaker, R. R. ( 1974; ). Characterization of pesticin: separation of antibacterial activities. J Biol Chem 249, 4749–4753.
    [Google Scholar]
  51. Kado, C. I. & Liu, S. T. ( 1981; ). Rapid procedure for detection of and isolation of large and small plasmids. J Bacteriol 145, 1365–1373.
    [Google Scholar]
  52. Kirillina, O., Fetherston, J. D., Bobrov, A. G., Abney, J. & Perry, R. D. ( 2004; ). HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54, 75–88.[CrossRef]
    [Google Scholar]
  53. Kupferberg, L. L. & Higuchi, K. ( 1958; ). Role of calcium ions in the stimulation of growth of virulent strains of Pasteurella pestis. J Bacteriol 76, 120–121.
    [Google Scholar]
  54. Kutyrev, V. V., Popov, Y. A. & Protsenko, O. A. ( 1986; ). Pathogenicity plasmids of the plague microbe (Yersinia pestis). Mol Gen Mikrobiol Virusol 6, 3–11.
    [Google Scholar]
  55. Lähteenmäki, K., Virkola, R., Sarén, A., Emödy, E. & Korhonen, T. K. ( 1998; ). Expression of the plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 66, 5755–5762.
    [Google Scholar]
  56. Larsson, P., Oyston, P. C., Chain, P., Chu, M. C., Duffield, M., Fuxelius, H. H., Garcia, E., Hälltorp, G., Johansson, D. & other authors ( 2005; ). The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37, 153–159.[CrossRef]
    [Google Scholar]
  57. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. ( 1951; ). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275.
    [Google Scholar]
  58. Lucier, T. S. & Brubaker, R. R. ( 1992; ). Determination of genome size, macrorestriction pattern polymorphism, and nonpigmentation-specific deletion in Yersinia pestis by pulsed-field gel electrophoresis. J Bacteriol 174, 2078–2086.
    [Google Scholar]
  59. Martinevskii, I. L. ( 1969; ). Biology and Genetic Features of Plague and Plague-Related Microbes. Moscow, USSR: Meditsina Press.
  60. Mortlock, R. P. ( 1962; ). Gluconate metabolism of Pasteurella pestis. J Bacteriol 84, 53–59.
    [Google Scholar]
  61. Mortlock, R. P. & Brubaker, R. R. ( 1962; ). Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities of Pasteurella pestis and Pasteurella pseudotuberculosis. J Bacteriol 84, 1122–1123.
    [Google Scholar]
  62. Motin, V. L., Georgescu, A. M., Fitch, J. P., Gu, P. P., Nelson, D. O., Mabery, S. L., Garnham, J. B., Sokhansanj, B. A., Ott, L. L. & other authors ( 2004; ). Temporal global changes in gene expression during temperature transition in Yersinia pestis. J Bacteriol 186, 6298–6305.[CrossRef]
    [Google Scholar]
  63. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  64. Perry, R. D., Bearden, S. W. & Fetherston, J. D. ( 2001; ). Iron and heme acquisition and storage systems of Yersinia pestis. Recent Res Dev Microbiol 5, 13–27.
    [Google Scholar]
  65. Protsenko, O. A., Anisimov, P. I., Mosarov, O. T., Donnov, N. P., Popov, Y. A. & Kokushkin, A. M. ( 1983; ). Detection and characterization of Yersinia pestis plasmids determining pesticin I, fraction 1 antigen and mouse toxin synthesis. Genetika 19, 1081–1090.
    [Google Scholar]
  66. Pujol, C., Grabenstein, J. P., Perry, R. D. & Bliska, J. B. ( 2005; ). Replication of Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene encoded in the pigmentation locus. Proc Natl Acad Sci U S A 102, 12909–12914.[CrossRef]
    [Google Scholar]
  67. Schiemann, D. A., Devenish, J. A. & Toma, S. ( 1981; ). Characteristics of virulence in human isolates of Yersinia enterocolitica. Infect Immun 32, 400–403.
    [Google Scholar]
  68. Sodeinde, O. A., Subrahmanyam, Y. V. B. K., Stark, K., Quan, T., Bao, Y. & Goguen, J. D. ( 1992; ). A surface protease and the invasive character of plague. Science 258, 1004–1007.[CrossRef]
    [Google Scholar]
  69. Sun, Y. C., Hinnebusch, B. J. & Darby, C. ( 2008; ). Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A 105, 8097–8101.[CrossRef]
    [Google Scholar]
  70. Suntsov, V. & Suntsova, N. ( 2008; ). Concepts of macro- and microevolution as related to the problem of origin and global expansion of the plague pathogen Yersinia pestis. Biol Bull 35, 333–338.[CrossRef]
    [Google Scholar]
  71. Surgalla, M. J. & Beesley, E. D. ( 1969; ). Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol 18, 834–837.
    [Google Scholar]
  72. Tchawa Yimga, M., Leatham, M. P., Allen, J. H., Laux, D. C., Conway, T. & Cohen, P. S. ( 2006; ). Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. Infect Immun 74, 1130–1140.[CrossRef]
    [Google Scholar]
  73. Thal, E. & Knapp, W. ( 1971; ). A revised antigenic scheme of Yersinia pseudotuberculosis. Symp Series Immunobiol Stand 15, 219–222.
    [Google Scholar]
  74. Viola, R. E., Yerman, L., Fowler, J. M., Arvidson, C. G. & Brubaker, R. R. ( 2008; ). A missense mutation causes aspartase-deficiency in Yersinia pestis. Microbiology 154, 1271–1280.[CrossRef]
    [Google Scholar]
  75. Winblad, S. ( 1968; ). Studies on O-antigen factors of “Yersinia enterocolitica”. Prog Immunobiol Stand 9, 337–342.
    [Google Scholar]
  76. Winblad, S., Nilehn, B. & Jonsson, M. ( 1966; ). Two further cases, bacteriologically verified, of human infection with “Pasteurella X” (syn. Yersinia enterocolitica). Acta Pathol Microbiol Scand 67, 537–541.
    [Google Scholar]
  77. Worsham, P. & Hunter, M. ( 1998; ). Characterization of pestoides F, an atypical strain of Y. pestis. Medische Microbiologie 6, S34–S35.
    [Google Scholar]
  78. Worsham, P. L. & Roy, C. ( 2003; ). Pestoides F, a Yersinia pestis strain lacking plasminogen activator, is virulent by the aerosol route. Adv Exp Med Biol 529, 129–131.
    [Google Scholar]
  79. Wu, L.-T., Chun, J. W. H. & Pollitzer, R. & Wu, C. Y. ( 1936; ). Plague: a Manual for Medical and Public Health Workers. Shanghai: China.
  80. Yellin, T. O. & Wriston, J. C. ( 1966; ). Purification and properties of guinea pig serum asparaginase. Biochemistry 5, 1605 [CrossRef]
    [Google Scholar]
  81. Zhou, D., Tong, Z., Song, Y., Han, Y., Pei, D., Pang, X., Zhai, J., Li, M., Cui, B. & other authors ( 2004; ). Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol 186, 5147–5152.[CrossRef]
    [Google Scholar]
  82. Zudina, I. V. ( 2000; ). Genetic characterization of the chromosomal pigmentation region of five Yersinia pestis subspecies. PhD dissertation, Russian Research Anti-Plague Institute ‘Microbe’, Saratov, Russia.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021170-0
Loading
/content/journal/micro/10.1099/mic.0.021170-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error