1887

Abstract

Recently, biofilms have become a topic of interest in the study of the human pathogen group A (GAS). In this study, we sought to learn more about the make-up of these structures and gain insight into biofilm regulation. Enzymic studies indicated that biofilm formation by GAS strain MGAS5005 required an extracellular protein and DNA component(s). Previous results indicated that inactivation of the transcriptional regulator Srv in MGAS5005 resulted in a significant decrease in virulence. Here, inactivation of Srv also resulted in a significant decrease in biofilm formation under both static and flow conditions. Given that production of the extracellular cysteine protease SpeB is increased in the mutant, we tested the hypothesis that increased levels of active SpeB may be responsible for the reduction in biofilm formation. Western immunoblot analysis indicated that SpeB was absent from MGAS5005 biofilms. Complementation of MGAS5005Δ restored the biofilm phenotype and eliminated the overproduction of active SpeB. Inhibition of SpeB with E64 also restored the MGAS5005Δ biofilm to wild-type levels.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021048-0
2009-01-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/46.html?itemId=/content/journal/micro/10.1099/mic.0.021048-0&mimeType=html&fmt=ahah

References

  1. Akiyama H., Morizane S., Yamasaki O., Oono T., Iwatsuki K.. 2003; Assessment of Streptococcus pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. J Dermatol Sci32:193–199
    [Google Scholar]
  2. Baldassarri L., Creti R., Recchia S., Imperi M., Facinelli B., Giovanetti E., Pataracchia M., Alfarone G., Orefici G.. 2006; Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol44:2721–2727
    [Google Scholar]
  3. Bayles K. W.. 2007; The biological role of death and lysis in biofilm development. Nat Rev Microbiol5:721–726
    [Google Scholar]
  4. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D. S., Weinrauch Y., Zychlinsky A.. 2004; Neutrophil extracellular traps kill bacteria. Science303:1532–1535
    [Google Scholar]
  5. Buchanan J. T., Simpson A. J., Aziz R. K., Liu G. Y., Kristian S. A., Kotb M., Feramisco J., Nizet V.. 2006; DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol16:396–400
    [Google Scholar]
  6. Cho K. H., Caparon M. G.. 2005; Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol57:1545–1556
    [Google Scholar]
  7. Conley J., Olson M. E., Cook L. S., Ceri H., Phan V., Davies H. D.. 2003; Biofilm formation by group A streptococci: is there a relationship with treatment failure?. J Clin Microbiol41:4043–4048
    [Google Scholar]
  8. Cunningham M. W.. 2000; Pathogenesis of group A streptococcal infections. Clin Microbiol Rev13:470–511
    [Google Scholar]
  9. Doern C. D., Holder R. C., Reid S. D.. 2008; Point mutations within the streptococcal regulator of virulence (Srv) alter protein–DNA interactions and Srv function. Microbiology154:1998–2007
    [Google Scholar]
  10. Donlan R. M.. 2001; Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis33:1387–1392
    [Google Scholar]
  11. Donlan R. M., Costerton J. W.. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev15:167–193
    [Google Scholar]
  12. Hall-Stoodley L., Costerton J. W., Stoodley P.. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol2:95–108
    [Google Scholar]
  13. Kansal R. G., Nizet V., Jeng A., Chuang W. J., Kotb M.. 2003; Selective modulation of superantigen-induced responses by streptococcal cysteine protease. J Infect Dis187:398–407
    [Google Scholar]
  14. Lappin-Scott H. M., Bass C.. 2001; Biofilm formation: attachment, growth, and detachment of microbes from surfaces. Am J Infect Control29:250–251
    [Google Scholar]
  15. Lembke C., Podbielski A., Hidalgo-Grass C., Jonas L., Hanski E., Kreikemeyer B.. 2006; Characterization of biofilm formation by clinically relevant serotypes of group A streptococci. Appl Environ Microbiol72:2864–2875
    [Google Scholar]
  16. Lukomski S., Wyde P. R., Podbielski A., Rurangirwa J., Moore-Poveda D. K., Musser J. M., Burns E. H. Jr. 1998; Genetic inactivation of an extracellular cysteine protease (SpeB) expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect Immun66:771–776
    [Google Scholar]
  17. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R.. 1996; The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol178:175–183
    [Google Scholar]
  18. Maira-Litran T., Kropec A., Abeygunawardana C., Joyce J., Mark G. III, Goldmann D. A., Pier G. B.. 2002; Immunochemical properties of the staphylococcal poly- N-acetylglucosamine surface polysaccharide. Infect Immun70:4433–4440
    [Google Scholar]
  19. Manetti A. G., Zingaretti C., Falugi F., Capo S., Bombaci M., Bagnoli F., Gambellini G., Bensi G., Mora M.. other authors 2007; Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol Microbiol64:968–983
    [Google Scholar]
  20. Musser J. M., Krause R. M.. 1998; The revival of group A streptococcal diseases, with a commentary on staphylococcal toxic shock syndrome. In Emerging Infections pp185–218 Edited by Krause. Academic Press;
    [Google Scholar]
  21. Purevdorj B., Costerton J. W., Stoodley P.. 2002; Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol68:4457–4464
    [Google Scholar]
  22. Reid S. D., Hoe N. P., Smoot L. M., Musser J. M.. 2001; Group A Streptococcus: allelic variation, population genetics, and host–pathogen interactions. J Clin Invest107:393–399
    [Google Scholar]
  23. Reid S. D., Montgomery A. G., Musser J. M.. 2004; Identification of srv, a PrfA-like regulator of group A Streptococcus that influences virulence. Infect Immun72:1799–1803
    [Google Scholar]
  24. Reid S. D., Chaussee M. S., Doern C. D., Chaussee M. A., Montgomery A. G., Sturdevant D. E., Musser J. M.. 2006; Inactivation of the group A Streptococcus regulator srv results in chromosome wide reduction of transcript levels, and changes in extracellular levels of Sic and SpeB. FEMS Immunol Med Microbiol48:283–292
    [Google Scholar]
  25. Riani C., Standar K., Srimuang S., Lembke C., Kreikemeyer B., Podbielski A.. 2007; Transcriptome analyses extend understanding of Streptococcus pyogenes regulatory mechanisms and behavior toward immunomodulatory substances. Int J Med Microbiol297:513–523
    [Google Scholar]
  26. Ryder C., Byrd M., Wozniak D. J.. 2007; Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol10:644–648
    [Google Scholar]
  27. Stoodley P., Jacobsen A., Dunsmore B. C., Purevdorj B., Wilson S., Lappin-Scott H. M., Costerton J. W.. 2001; The influence of fluid shear and AICI3 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 biofilms. Water Sci Technol43:113–120
    [Google Scholar]
  28. Sumby P., Barbian K. D., Gardner D. J., Whitney A. R., Welty D. M., Long R. D., Bailey J. R., Parnell M. J., Hoe N. P.. other authors 2005; Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci U S A102:1679–1684
    [Google Scholar]
  29. Sumby P., Whitney A. R., Graviss E. A., DeLeo F. R., Musser J. M.. 2006; Genome-wide analysis of group A streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog2:e5
    [Google Scholar]
  30. Takemura N., Noiri Y., Ehara A., Kawahara T., Noguchi N., Ebisu S.. 2004; Single species biofilm-forming ability of root canal isolates on gutta-percha points. Eur J Oral Sci112:523–529
    [Google Scholar]
  31. Vincents B., von Pawel-Rammingen U., Björck L., Abrahamson M.. 2004; Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding. Biochemistry43:15540–15549
    [Google Scholar]
  32. Walker M. J., Hollands A., Sanderson-Smith M. L., Cole J. N., Kirk J. K., Henningham A., McArthur J. D., Dinkla K., Aziz R. K.. other authors 2007; DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med13:981–985
    [Google Scholar]
  33. Wang X., Preston J. F. III, Romeo T.. 2004; The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol186:2724–2734
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021048-0
Loading
/content/journal/micro/10.1099/mic.0.021048-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error