1887

Abstract

The response of a cell to integrated stresses was investigated using environmental and/or genetic perturbations that disrupted labile iron homeostasis and increased oxidative stress. The effects of the perturbations were monitored as nutritional requirements, and were traced to specific enzymic targets. A mutant strain required exogenous thiamine and methionine for growth. The thiamine requirement, which had previously been linked to the Fe–S cluster proteins ThiH and ThiC, was responsive to oxidative stress and was not directly affected by manipulation of the iron pool. The methionine requirement was associated with the activity of sulfite reductase, an enzyme that appeared responsive to disruption of labile iron homeostasis. The results are incorporated in a model to suggest how the activity of iron-containing enzymes not directly sensitive to oxygen can be decreased by oxidation of the labile iron pool.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.020727-0
2009-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/295.html?itemId=/content/journal/micro/10.1099/mic.0.020727-0&mimeType=html&fmt=ahah

References

  1. Berkovitch F., Behshad E., Tang K. H., Enns E. A., Frey P. A., Drennan C. L. 2004; A locking mechanism preventing radical damage in the absence of substrate, as revealed by the x-ray structure of lysine 5,6-aminomutase. Proc Natl Acad Sci U S A 101:15870–15875
    [Google Scholar]
  2. Berkowitz D., Hushon J. M., Whitfield H. J., Roth J., Ames B. N. 1968; Procedure for identifying nonsense mutations. J Bacteriol 96:215–220
    [Google Scholar]
  3. Bou-Abdallah F., Adinolfi S., Pastore A., Laue T. M., Dennis Chasteen N. 2004; Iron binding and oxidation kinetics in frataxin CyaY of Escherichia coli . J Mol Biol 341:605–615
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Carlioz A., Touati D. 1986; Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?. EMBO J 5:623–630
    [Google Scholar]
  6. Christner J. A., Janick P. A., Siegel L. M., Munck E. 1983; Mossbauer studies of Escherichia coli sulfite reductase complexes with carbon monoxide and cyanide. Exchange coupling and intrinsic properties of the [4Fe–4S] cluster. . J Biol Chem 258:11157–11164
    [Google Scholar]
  7. Cole J. A., Ward F. B. 1973; Nitrite reductase-deficient mutants of Escherichia coli K12. J Gen Microbiol 76:21–29
    [Google Scholar]
  8. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  9. Ding H., Yang J., Coleman L. C., Yeung S. 2007; Distinct iron binding property of two putative iron donors for the iron–sulfur cluster assembly: IscA and the bacterial frataxin ortholog CyaY under physiological and oxidative stress conditions. J Biol Chem 282:7997–8004
    [Google Scholar]
  10. Dougherty M. J., Downs D. M. 2006; A connection between iron-sulfur cluster metabolism and the biosynthesis of 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate in Salmonella enterica . Microbiology 152:2345–2353
    [Google Scholar]
  11. Dreyfuss J., Monty K. J. 1963; Coincident repression of the reduction of 3′-phosphoadenosine 5′-phosphosulfate, sulfite, and thiosulfate in the cysteine pathway of Salmonella typhimurium . J Biol Chem 238:3781–3783
    [Google Scholar]
  12. Fazzio T. G., Roth J. R. 1996; Evidence that the CysG protein catalyzes the first reaction specific to B12 synthesis in Salmonella typhimurium, insertion of cobalt. J Bacteriol 178:6952–6959
    [Google Scholar]
  13. Flint D. H., Tuminello J. F., Emptage M. H. 1993; The inactivation of Fe–S cluster containing hydro-lyases by superoxide. J Biol Chem 268:22369–22376
    [Google Scholar]
  14. Freeman J. L., Persans M. W., Nieman K., Salt D. E. 2005; Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense . Appl Environ Microbiol 71:8627–8633
    [Google Scholar]
  15. Friedrich T., Bottcher B. 2004; The gross structure of the respiratory complex I: a Lego system. Biochim Biophys Acta 16081–9
    [Google Scholar]
  16. Gardner P. R., Fridovich I. 1991; Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333
    [Google Scholar]
  17. Gardner P. R., Fridovich I. 1992; Inactivation–reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267:8757–8763
    [Google Scholar]
  18. Goldman B. S., Roth J. R. 1993; Genetic structure and regulation of the cysG gene in Salmonella typhimurium . J Bacteriol 175:1457–1466
    [Google Scholar]
  19. Gralnick J., Downs D. 2001; Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica . Proc Natl Acad Sci U S A 98:8030–8035
    [Google Scholar]
  20. Gralnick J. A., Downs D. M. 2003; The YggX protein of Salmonella enterica is involved in Fe(II) trafficking and minimizes the DNA damage caused by hydroxyl radicals: residue CYS-7 is essential for YggX function. J Biol Chem 278:20708–20715
    [Google Scholar]
  21. Gralnick J., Webb E., Beck B., Downs D. 2000; Lesions in gshA (encoding gamma-l-glutamyl-l-cysteine synthetase) prevent aerobic synthesis of thiamine in Salmonella enterica serovar typhimurium LT2. J Bacteriol 182:5180–5187
    [Google Scholar]
  22. Helbig K., Bleuel C., Krauss G. J., Nies D. H. 2008; Glutathione and transition-metal homeostasis in Escherichia coli . J Bacteriol 190:5431–5438
    [Google Scholar]
  23. Hinchliffe P., Sazanov L. A. 2005; Organization of iron–sulfur clusters in respiratory complex I. Science 309:771–774
    [Google Scholar]
  24. Jang S., Imlay J. A. 2007; Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron–sulfur enzymes. J Biol Chem 282:929–937
    [Google Scholar]
  25. Jocelyn P. C. 1972 Biochemistry of the Sulfhydryl Group New York: Academic Press;
    [Google Scholar]
  26. Keyer K., Imlay J. A. 1996; Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A 93:13635–13640
    [Google Scholar]
  27. Kriek M., Martins F., Leonardi R., Fairhurst S. A., Lowe D. J., Roach P. L. 2007; Thiazole synthase from Escherichia coli: an investigation of the substrates and purified proteins required for activity in vitro. J Biol Chem 282:17413–17423
    [Google Scholar]
  28. Layer G., Moser J., Heinz D. W., Jahn D., Schubert W. D. 2003; Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes. EMBO J 22:6214–6224
    [Google Scholar]
  29. Leonardi R., Roach P. L. 2004; Thiamine biosynthesis in Escherichia coli: in vitro reconstitution of the thiazole synthase activity. J Biol Chem 279:17054–17062
    [Google Scholar]
  30. Li N. C., Manning R. A. 1955; Some metal complexes of sulfur-containing amino acids. J Am Chem Soc 77:5225–5227
    [Google Scholar]
  31. Liochev S. I., Fridovich I. 1994; The role of O2· in the production of HO·: in vitro and in vivo. Free Radic Biol Med 16:29–33
    [Google Scholar]
  32. Lutz T., Westermann B., Neupert W., Herrmann J. M. 2001; The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria. J Mol Biol 307:815–825
    [Google Scholar]
  33. Martinez-Gomez N. C., Downs D. M. 2008; ThiC is an [Fe–S] cluster protein that requires AdoMet to generate the 4-amino-5-hydroxymethyl-2-methylpyrimidine moiety in thiamin synthesis. Biochemistry 47:9054–9056
    [Google Scholar]
  34. Martinez-Gomez N. C., Robers M., Downs D. M. 2004; Mutational analysis of ThiH, a member of the radical S-adenosylmethionine (AdoMet) protein superfamily. J Biol Chem 279:40505–40510
    [Google Scholar]
  35. Masse E., Gottesman S. 2002; A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli . Proc Natl Acad Sci U S A 99:4620–4625
    [Google Scholar]
  36. Nair M., Adinolfi S., Pastore C., Kelly G., Temussi P., Pastore A. 2004; Solution structure of the bacterial frataxin ortholog, CyaY: mapping the iron binding sites. Structure 12:2037–2048
    [Google Scholar]
  37. Perrin D. D., Watt A. E. 1971; Complex formation of zinc and cadmium with glutathione. Biochim Biophys Acta 230:96–104
    [Google Scholar]
  38. Petrat F., de Groot H., Sustmann R., Rauen U. 2002; The chelatable iron pool in living cells: a methodically defined quantity. Biol Chem 383:489–502
    [Google Scholar]
  39. Pomposiello P. J., Demple B. 2000; Identification of SoxS-regulated genes in Salmonella enterica serovar Typhimurium. J Bacteriol 182:23–29
    [Google Scholar]
  40. Puccio H., Koenig M. 2000; Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum Mol Genet 9:887–892
    [Google Scholar]
  41. Siegel L. M. 1965; A direct microdetermination for sulfide. Anal Biochem 11:126–132
    [Google Scholar]
  42. Skovran E., Downs D. M. 2000; Metabolic defects caused by mutations in the isc gene cluster in Salmonella enterica serovar Typhimurium: implications for thiamine synthesis. J Bacteriol 182:3896–3903
    [Google Scholar]
  43. Skovran E., Downs D. M. 2003; Lack of the ApbC or ApbE protein results in a defect in Fe–S cluster metabolism in Salmonella enterica serovar Typhimurium. J Bacteriol 185:98–106
    [Google Scholar]
  44. Skovran E., Lauhon C. T., Downs D. M. 2004; Lack of YggX results in chronic oxidative stress and uncovers subtle defects in Fe–S cluster metabolism in Salmonella enterica . J Bacteriol 186:7626–7634
    [Google Scholar]
  45. Snell F. D., Snell C. T. 1949 Colorimetric Methods of Analysis , 3rd edn. New York: Van Nostrand;
    [Google Scholar]
  46. Spencer J. B., Stolowich N. J., Roessner C. A., Scott A. I. 1993; The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett 335:57–60
    [Google Scholar]
  47. Srinivasan C., Liba A., Imlay J. A., Valentine J. S., Gralla E. B. 2000; Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance. J Biol Chem 275:29187–29192
    [Google Scholar]
  48. Stroupe M. E., Leech H. K., Daniels D. S., Warren M. J., Getzoff E. D. 2003; CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat Struct Biol 10:1064–1073
    [Google Scholar]
  49. Sugiura Y., Tanaka H. 1972; Iron–sulfide chelates of some sulfur-containing peptides as model complex of non-heme iron proteins. Biochem Biophys Res Commun 46:335–340
    [Google Scholar]
  50. Thorgersen M. P., Downs D. M. 2007; Cobalt targets multiple metabolic processes in Salmonella enterica . J Bacteriol 189:7774–7781
    [Google Scholar]
  51. Thorgersen M. P., Downs D. 2008; Analysis of yggX and gshA mutants provides insights on the labile iron pool in Salmonella enterica . J Bacteriol 190:7608–7613
    [Google Scholar]
  52. Vivas E., Skovran E., Downs D. M. 2006; Salmonella enterica strains lacking the frataxin homolog CyaY show defects in Fe–S cluster metabolism in vivo . J Bacteriol 188:1175–1179
    [Google Scholar]
  53. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. 1984; New Tn 10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32:369–379
    [Google Scholar]
  54. Yankovskaya V., Horsefield R., Tornroth S., Luna-Chavez C., Miyoshi H., Leger C., Byrne B., Cecchini G., Iwata S. 2003; Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704
    [Google Scholar]
  55. Yoon T., Cowan J. A. 2003; Iron–sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe–2S] clusters in ISU-type proteins. J Am Chem Soc 125:6078–6084
    [Google Scholar]
  56. Zambrano M. M., Kolter R. 1993; Escherichia coli mutants lacking NADH dehydrogenase I have a competitive disadvantage in stationary phase. J Bacteriol 175:5642–5647
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.020727-0
Loading
/content/journal/micro/10.1099/mic.0.020727-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error