1887

Abstract

The bioprotection performance of against the root parasite was studied. We found that maize plants first grown with and at day 10 inoculated with showed improvements in biomass, and root length and number as compared with plants grown with alone. To validate our finding that inoculation with suppresses colonization by , we performed PCR analyses using - and -specific primers. Our results showed that inoculation with suppresses further colonization by . We hypothesized that as the colonization by increases, the presence of/colonization by decreases. In roots, catalase (CAT), glutathione reductase (GR), glutathione -transferase (GST) and superoxide dismutase (SOD) activities were found to be higher in -colonized plants than in non-colonized plants. Increased activity of antioxidant enzymes minimizes the chances of oxidative burst (excessive production of reactive oxygen species), and therefore might be protected from the oxidative defence system during colonization. We also observed decreased antioxidant enzyme activities in plants first inoculated with and at day 10 inoculated with as compared with plants inoculated with alone. These decreased antioxidant enzyme activities due to the presence of help the plant to overcome the disease load of . We propose that can be used as a bioprotection agent against the root parasite

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.019869-0
2009-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/780.html?itemId=/content/journal/micro/10.1099/mic.0.019869-0&mimeType=html&fmt=ahah

References

  1. Alguacil, M. M., Hernandez, J. A., Caravaca, F., Portillo, B. & Roldan, A. ( 2003; ). Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118, 562–570.[CrossRef]
    [Google Scholar]
  2. Alvarez, M. E., Pennell, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A. & Lamb, C. ( 1998; ). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92, 773–784.[CrossRef]
    [Google Scholar]
  3. Arnon, D. I. & Hoagland, D. R. ( 1940; ). Crop production in artificial solutions and soil with special reference to factors influencing yields and absorption of organic nutrients. Soil Sci 50, 463–484.
    [Google Scholar]
  4. Auh, C. K. & Murphy, T. M. ( 1995; ). Plasma membrane redox enzyme is involved in the synthesis of O2 and H2O2 by Phytophthora elicitor-stimulated rose cells. Plant Physiol 107, 1241–1247.
    [Google Scholar]
  5. Beers, R. F. & Sizer, I. W. ( 1952; ). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195, 133–140.
    [Google Scholar]
  6. Blilou, I., Bueno, P., Ocampo, J. A. & Garcia-Garrido, J. ( 2000; ). Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycol Res 104, 722–725.[CrossRef]
    [Google Scholar]
  7. Bolwell, G. P., Butt, V. S., Davies, D. R. & Zimmerlin, A. ( 1995; ). The origin of the oxidative burst in plants. Free Radic Res 23, 517–532.[CrossRef]
    [Google Scholar]
  8. Boukcim, H. & Plassard, C. ( 2003; ). Juvenile nitrogen uptake capacities and root architecture of two open-pollinated families of Picea abies. Effects of nitrogen source and ectomycorrhizal symbiosis. J Plant Physiol 160, 1211–1218.[CrossRef]
    [Google Scholar]
  9. Bousquet, J., Simon, L. & LaLonde, M. ( 1990; ). DNA amplification from vegetative and sexual tissues of trees using polymerase chain reaction. Can J Res 20, 254–257.[CrossRef]
    [Google Scholar]
  10. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  11. Christensen, J. J. & Wilcoxson, R. D. ( 1966; ). Stalk Rot in Corn. The American Phytopathological Society, monograph no. 3. St Paul, MN: The American Phytopathological Society.
  12. Corpas, F. J., Barroso, J. B. & del Rio, L. A. ( 2001; ). Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6, 145–150.[CrossRef]
    [Google Scholar]
  13. Croft, K. P. C., Voisey, C. R. & Slusarenko, A. J. ( 1990; ). Mechanism of hypersensitive cell collapse: correlation of increased lipoxygenase activity with membrane damage in leaves of Phaseolus vulgaris (L.) inoculated with an avirulent race of Pseudomonas syringae pv. phaseolicola. Physiol Mol Plant Pathol 36, 49–62.[CrossRef]
    [Google Scholar]
  14. Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. W. ( 2001; ). Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36, 203–209.[CrossRef]
    [Google Scholar]
  15. Daniels, B. A. ( 1983; ). Elimination of Fusarium moniliforme from corn seed. Plant Dis 67, 609–611.[CrossRef]
    [Google Scholar]
  16. Dean, J. D., Goodwin, P. H. & Hsiang, T. ( 2005; ). Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. J Exp Bot 56, 1525–1533.[CrossRef]
    [Google Scholar]
  17. De Gara, L., De Pinto, M. C. & Tommasi, F. ( 2003; ). The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol Biochem 41, 863–870.[CrossRef]
    [Google Scholar]
  18. Deshmukh, S., Huckelhoven, R., Schafer, P., Imani, J., Sharma, M., Weiss, M., Waller, F. & Kogel, K. H. ( 2006; ). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci U S A 103, 18450–18457.[CrossRef]
    [Google Scholar]
  19. Dickson, S., Mandeep & Smith, S. M. ( 1998; ). Evaluation of vesicular arbuscular mycorrhizal colonization by staining. In Mycorrhiza Manual, pp. 77–84. Edited by A. Varma. Berlin/Heidelberg: Springer Verlag.
  20. Doke, N. ( 1983; ). Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23, 345–357.[CrossRef]
    [Google Scholar]
  21. Doke, N. & Miura, Y. ( 1995; ). In vitro activation of NADPH-dependent O2 generating system in a plasma membrane-rich fraction of potato tuber tissues by treatment with an elicitor from Phytophthora infestans or with digitonin. Physiol Mol Plant Pathol 46, 17–28.[CrossRef]
    [Google Scholar]
  22. Futrell, M. C. & Kilgore, M. ( 1969; ). Poor stands of corn and reduction of root growth caused by Fusarium verticillioides. Plant Dis Rep 53, 213–215.
    [Google Scholar]
  23. García-Garrido, J. M. & Ocampo, J. A. ( 2002; ). Regulation of the plant defense response in arbuscular mycorrhizal symbiosis. J Exp Bot 53, 1377–1386.[CrossRef]
    [Google Scholar]
  24. Gianinazzi-Pearson, V. ( 1996; ). Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8, 1871–1883.[CrossRef]
    [Google Scholar]
  25. Gosling, P., Hodge, A., Goodlass, G. & Bending, G. D. ( 2006; ). Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113, 17–35.[CrossRef]
    [Google Scholar]
  26. Goyal, V., Chetal, S. & Nainawatee, H. S. ( 1986; ). Alterations in Rhizobium trifolii catalase under water stress. Folia Microbiol 31, 164–166.[CrossRef]
    [Google Scholar]
  27. Grant, J. J. & Loake, G. J. ( 2000; ). Role of reactive oxygen intermediates and cognate redox signalling in disease resistance. Plant Physiol 124, 21–29.[CrossRef]
    [Google Scholar]
  28. Grunwald, U., Nyamsuren, O., Tarnasloukht, M., Lapopin, L., Becker, A., Mann, P., Gianinazzi-Pearson, V., Krajinski, F. & Franken, P. ( 2004; ). Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Biol 55, 553–566.[CrossRef]
    [Google Scholar]
  29. Guescini, M., Pierleoni, R., Palma, F., Zeppa, S., Vallorani, L., Potenza, L., Sacconi, C., Giomaro, G. & Stocchi, V. ( 2003; ). Characterization of the Tuber borchii nitrate reductase gene and its role in ectomycorrhizae. Mol Genet Genomics 269, 807–816.[CrossRef]
    [Google Scholar]
  30. Habig, W. H., Pabst, M. J. & Jacoby, W. B. ( 1974; ). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249, 7130–7139.
    [Google Scholar]
  31. Harrier, L. A. & Watson, C. A. ( 2004; ). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60, 149–157.[CrossRef]
    [Google Scholar]
  32. Harrison, M. J. ( 1997; ). The arbuscular mycorrhizal symbiosis: an underground association. Trends Plant Sci 2, 54–60.
    [Google Scholar]
  33. Hill, T. W. & Kaefer, E. ( 2001; ). Improved protocols for aspergillus medium: trace elements and minimum medium salt stock solutions. Fungal Genet News Lett 48, 20–21.
    [Google Scholar]
  34. Ingram, D. S. ( 1978; ). Cell death and resistance to biotrophs. Ann Appl Biol 89, 291–295.
    [Google Scholar]
  35. Kogel, K. H., Franken, P. & Huckelhovenl, R. ( 2006; ). Endophyte or parasite – what decides? Curr Opin Plant Biol 9, 358–363.[CrossRef]
    [Google Scholar]
  36. Lambais, M. R. & Mehdy, M. C. ( 1993; ). Suppression of endochitinase, β-1,3-endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions. Mol Plant Microbe Interact 6, 75–83.[CrossRef]
    [Google Scholar]
  37. Lambais, M. R. & Mehdy, M. C. ( 1995; ). Differential expression of defense-related genes in arbuscular mycorrhiza. Can J Bot 73, S533–S540.[CrossRef]
    [Google Scholar]
  38. Lambais, M. R. & Mehdy, M. C. ( 1998; ). Spatial distribution of chitinases and β-1,3-glucanase transcripts in bean arbuscular mycorrhizal roots under low and high soil phosphate conditions. New Phytol 140, 33–42.[CrossRef]
    [Google Scholar]
  39. Levine, A., Tenhaken, R., Dixon, R. & Lamb, C. ( 1994; ). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583–593.[CrossRef]
    [Google Scholar]
  40. McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. ( 1990; ). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115, 495–501.[CrossRef]
    [Google Scholar]
  41. Mehdy, M., Sharma, Y. K., Sathasivan, K. & Bays, N. W. ( 1996; ). The role of activated oxygen species in plant disease resistance. Physiol Plant 98, 365–374.
    [Google Scholar]
  42. Mittler, R. ( 2002; ). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7, 405–410.[CrossRef]
    [Google Scholar]
  43. Ni, M., Dehesh, K., Tepperman, J. M. & Quail, P. H. ( 1996; ). GT-2: In vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell 8, 1041–1059.[CrossRef]
    [Google Scholar]
  44. Nordhoff, A., Bucheler, U. S., Werner, D. & Schirmer, R. H. ( 1993; ). Folding of the four domains and dimerization are impaired by the Gly446→Glu exchange in human glutathione reductase. Implications for the design of antiparasitic drugs. Biochemistry 32, 4060–4066.[CrossRef]
    [Google Scholar]
  45. Oehl, F., Sieverding, E., Mader, P., Dubois, D., Ineichen, K., Boller, T. & Wiemken, A. ( 2004; ). Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138, 574–583.[CrossRef]
    [Google Scholar]
  46. Peskan-Berghofer, T., Shahollari, B., Giong, P. H., Hehl, S., Markert, C., Blanke, V., Kost, G., Varma, A. & Oelmuller, R. ( 2004; ). Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122, 465–477.[CrossRef]
    [Google Scholar]
  47. Phillips, J. M. & Hayman, D. S. ( 1970; ). Improved procedures for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans Br Mycol Soc 55, 158–161.[CrossRef]
    [Google Scholar]
  48. Plenchette, C., Clermont-Dauphin, C., Meynard, J. M. & Fortin, J. A. ( 2005; ). Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85, 31–40.[CrossRef]
    [Google Scholar]
  49. Porcel, R., Barea, J. M. & Ruiz-Lozano, J. M. ( 2003; ). Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157, 135–143.[CrossRef]
    [Google Scholar]
  50. Requena, N., Perez-Solis, E., Azcon-Aguilar, C., Jeffries, P. & Barea, J. M. ( 2001; ). Management of indigenous plant–microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67, 495–498.[CrossRef]
    [Google Scholar]
  51. Roth, E. F., Jr & Gilbert, H. S. ( 1984; ). Pyrogallol assay for SOD: absence of a glutathione artifact. Anal Biochem 137, 50–53.[CrossRef]
    [Google Scholar]
  52. Ruiz-Lozano, J. M., Azcón, R. & Palma, J. M. ( 1996; ). Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytol 134, 327–333.[CrossRef]
    [Google Scholar]
  53. Scott, G. S. & Futrell, M. C. ( 1970; ). Response of maize seedlings to Fusarium moniliforme and a toxic material extracted from this fungus. Pl Dis Reporter 54, 483–486.
    [Google Scholar]
  54. Serfling, A., Wirsel, S. G. R., Lind, V. & Deising, H. B. ( 2007; ). Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97, 523–531.[CrossRef]
    [Google Scholar]
  55. Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A. & Oelmuller, R. ( 2005; ). The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280, 26241–26247.[CrossRef]
    [Google Scholar]
  56. Tanaka, A., Christensen, M. J., Takemoto, D., Park, P. & Scotta, B. ( 2006; ). Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18, 1052–1066.[CrossRef]
    [Google Scholar]
  57. Tenhaken, R., Levine, A., Brisson, L. F., Dixon, R. & Lamb, C. ( 1995; ). Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci U S A 92, 4158–4163.[CrossRef]
    [Google Scholar]
  58. Toro, M., Azcon, R. & Barea, J. M. ( 1998; ). The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacterias and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138, 265–273.[CrossRef]
    [Google Scholar]
  59. Vanacker, H., Harbinson, J., Ruisch, J., Carver, T. L. W. & Foyer, C. H. ( 1998; ). Antioxidant defences of the apoplast. Protoplasma 205, 129–140.[CrossRef]
    [Google Scholar]
  60. Varma, A., Verma, S., Sudha, Sahay, N., Butehorn, B. & Franken, P. ( 1999; ). Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65, 2741–2744.
    [Google Scholar]
  61. Varma, A., Singh, A., Sudha, Sahay, N. S., Sharma, J., Roy, A., Kumari, M., Rana, D., Thakran, S. and other authors ( 2001; ). Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. In The Mycota IX, Fungal Associations, pp. 125–150. Edited by B. Hock. Berlin-Heidelberg: Springer Verlag.
  62. Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Buetehorn, B. & Franken, P. ( 1998; ). Piriformospora indica, gen. et sp. nov., a new root colonizing fungus. Mycologia 90, 896–903.[CrossRef]
    [Google Scholar]
  63. Waller, F., Baltruschat, H., Achatz, B., Becker, K., Fischer, M., Fodor, J., Heier, T., Huckelhoven, R., Neumann, C. & other authors ( 2005; ). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102, 13386–13391.[CrossRef]
    [Google Scholar]
  64. Wojtaszek, P. ( 1997; ). Oxidative burst: an early plant response to pathogen infection. Biochem J 322, 681–692.
    [Google Scholar]
  65. Wu, G. S., Shortt, B. J., Lawrence, E. B., Leon, J., Fitzsimmons, K. C., Levine, E. B., Raskin, I. & Shah, D. M. ( 1997; ). Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115, 427–435.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.019869-0
Loading
/content/journal/micro/10.1099/mic.0.019869-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error