Skip to content
1887

Abstract

Bacterial genome engineering has evolved to provide increasingly precise, robust and rapid tools, driving the development and optimization of bacterial production of numerous compounds. The field has progressed from early random mutagenesis methods, labour-intensive and inefficient, to rational and multiplexed strategies enabled by advances in genomics and synthetic biology. Among these tools, CRISPR/Cas has stood out for its versatility and its ability to achieve precision levels ranging from 50% to 90%, compared to the 10–40% obtained with earlier techniques, thereby enabling remarkable improvements in bacterial productivity. Nevertheless, like its predecessors, it still demands continuous refinement to reach full maturity. In this context, the present review addresses the lack of a unified overview by summarizing historical milestones and practical applications of genomic engineering tools in bacteria. It integrates diverse approaches to provide a comprehensive perspective on the evolution and prospects of these fundamental biotechnological tools.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001628
2025-11-03
2025-11-15

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/micro/171/11/mic001628.html?itemId=/content/journal/micro/10.1099/mic.0.001628&mimeType=html&fmt=ahah

References

  1. Singh B, Christina E. Chapter 11 - Bacterial metabolites: an unexplored quarry. In Kumar A, Singh J, Samuel J. eds Volatiles and Metabolites of Microbes Academic Press; 2021 p ages [View Article]
    [Google Scholar]
  2. Kumar RR, Prasad S. Metabolic engineering of bacteria. Indian J Microbiol 2011; 51:403–409 [View Article] [PubMed]
    [Google Scholar]
  3. Berg P, Mertz JE. Personal reflections on the origins and emergence of recombinant DNA technology. Genetics 2010; 184:9–17 [View Article] [PubMed]
    [Google Scholar]
  4. Chang AC, Cohen SN. Genome construction between bacterial species in vitro: replication and expression of Staphylococcus plasmid genes in Escherichia coli. Proc Natl Acad Sci USA 1974; 71:1030–1034 [View Article] [PubMed]
    [Google Scholar]
  5. Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 1979; 76:106–110 [View Article] [PubMed]
    [Google Scholar]
  6. Itakura K, Hirose T, Crea R, Riggs AD, Heyneker HL et al. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 1977; 198:1056–1063 [View Article]
    [Google Scholar]
  7. Rosenberg SA, Grimm EA, McGrogan M, Doyle M, Kawasaki E et al. Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science 1984; 223:1412–1415 [View Article]
    [Google Scholar]
  8. Ross MJ, Olson KC, Geier MD, O´Connor JV, Jones AJS. Recombinant DNA Synthesis of Human Growth Hormone. In Raiti S, Tolman RA. eds Human Growth Hormone Boston, MA: Springer; 1986 pp 241–256 [View Article]
    [Google Scholar]
  9. Adrio JL, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs 2010; 1:116–131 [View Article] [PubMed]
    [Google Scholar]
  10. Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 2012; 14:233–241 [View Article] [PubMed]
    [Google Scholar]
  11. Bailey JE. Toward a science of metabolic engineering. Science 1991; 252:1668–1675 [View Article] [PubMed]
    [Google Scholar]
  12. Stephanopoulos G, Vallino JJ. Network rigidity and metabolic engineering in metabolite overproduction. Science 1991; 252:1675–1681 [View Article] [PubMed]
    [Google Scholar]
  13. Nielsen J. Metabolic engineering. Appl Microbiol Biotechnol 2001; 55:263–283 [View Article] [PubMed]
    [Google Scholar]
  14. Atwood KC, Schneider LK, Ryan FJ. Periodic selection in Escherichia Coli. Proc Natl Acad Sci USA 1951; 37:146–155 [View Article]
    [Google Scholar]
  15. Witkin EM. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev 1976; 40:869–907 [View Article] [PubMed]
    [Google Scholar]
  16. Dunkel VC, Zeiger E, Brusick D, McCoy E, McGregor D et al. Reproducibility of microbial mutagenicity assays: II. Testing of carcinogens and noncarcinogens in Salmonella typhimurium and Escherichia coli. Environ Mutagen 1985; 7:1–248 [View Article] [PubMed]
    [Google Scholar]
  17. Enquist LW, Kikuchi A, Weisberg RA. The role of lambda integrase in integration and excision. Cold Spring Harbor symposia on quantitative biology 1979; 43 Pt 21115–1120 [View Article] [PubMed]
    [Google Scholar]
  18. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1983; 1:784–791 [View Article]
    [Google Scholar]
  19. Lammens EM, Nikel PI, Lavigne R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat Commun 2020; 11:5294 [View Article] [PubMed]
    [Google Scholar]
  20. Russell CB, Thaler DS, Dahlquist FW. Chromosomal transformation of Escherichia coli recD strains with linearized plasmids. J Bacteriol 1989; 171:2609–2613 [View Article]
    [Google Scholar]
  21. Hamilton CM, Aldea M, Washburn BK, Babitzke P, Kushner SR. New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol 1989; 171:4617–4622 [View Article]
    [Google Scholar]
  22. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467 [View Article]
    [Google Scholar]
  23. Mullis K, Faloona F, Scharf S, Saiki R, Horn G et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 1986; 51 Pt 1:263–273 [View Article] [PubMed]
    [Google Scholar]
  24. Rawls R. Synthetic biology’ makes its debut nucleic acids are one focus of approach based on nonnatural molecules designed to function in biological systems. Chem Eng News 2000; 78:49–53 [View Article]
    [Google Scholar]
  25. Benner SA, Sismour AM. Synthetic biology. Nat Rev Genet 2005; 6:533–543 [View Article] [PubMed]
    [Google Scholar]
  26. Zhou Y, Han Y. Engineered bacteria as drug delivery vehicles: principles and prospects. Eng Microbiol 2022; 2:100034 [View Article] [PubMed]
    [Google Scholar]
  27. Liu Y, Feng J, Pan H, Zhang X, Zhang Y. Genetically engineered bacterium: principles, practices, and prospects. Front Microbiol 2022; 13:997587 [View Article]
    [Google Scholar]
  28. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000; 97:6640–6645 [View Article] [PubMed]
    [Google Scholar]
  29. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006.0008 [View Article] [PubMed]
    [Google Scholar]
  30. Ellis HM, Yu D, DiTizio T, Court DL. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci USA 2001; 98:6742–6746 [View Article] [PubMed]
    [Google Scholar]
  31. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 2009; 460:894–898 [View Article] [PubMed]
    [Google Scholar]
  32. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109:E2579–86 [View Article] [PubMed]
    [Google Scholar]
  33. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 2011; 39:9275–9282 [View Article] [PubMed]
    [Google Scholar]
  34. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337:816–821 [View Article] [PubMed]
    [Google Scholar]
  35. Peters JM, Silvis MR, Zhao D, Hawkins JS, Gross CA et al. Bacterial CRISPR: accomplishments and prospects. Curr Opin Microbiol 2015; 27:121–126 [View Article] [PubMed]
    [Google Scholar]
  36. Calvo-Villamañán A, Ng JW, Planel R, Ménager H, Chen A et al. On-target activity predictions enable improved CRISPR-dCas9 screens in bacteria. Nucleic Acids Res 2020; 48:e64 [View Article] [PubMed]
    [Google Scholar]
  37. Mazodier P, Davies J. Gene transfer between distantly related bacteria. Annu Rev Genet 1991; 25:147–171 [View Article] [PubMed]
    [Google Scholar]
  38. Woodall CA. DNA transfer by bacterial conjugation. Methods Mol Biol 2003; 235:61–65 [View Article] [PubMed]
    [Google Scholar]
  39. Ozeki H, Ikeda H. Transduction mechanisms. Annu Rev Genet 1968; 2:245–278 [View Article]
    [Google Scholar]
  40. Luria SE, Human ML. A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol 1952; 64:557–569 [View Article] [PubMed]
    [Google Scholar]
  41. Arber W, Dussoix D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J Mol Biol 1962; 5:18–36 [View Article] [PubMed]
    [Google Scholar]
  42. Gefter ML, Becker A, Hurwitz J. The enzymatic repair of DNA. I. Formation of circular lambda-DNA. Proc Natl Acad Sci U S A 1967; 58:240–247 [View Article] [PubMed]
    [Google Scholar]
  43. Olivera BM, Lehman IR. Linkage of polynucleotides through phosphodiester bonds by an enzyme from Escherichia coli. Proc Natl Acad Sci USA 1967; 57:1426–1433 [View Article] [PubMed]
    [Google Scholar]
  44. Kelly TJ Jr, Smith HO. A restriction enzyme from Hemophilus influenzae. II. J Mol Biol 1970; 51:393–409 [View Article] [PubMed]
    [Google Scholar]
  45. Danna K, Nathans D. Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci USA 1971; 68:2913–2917 [View Article] [PubMed]
    [Google Scholar]
  46. Lobban PE. An Enzymatic Method for End-to-End Joining of DNA Molecules. Ph.D. Thesis Stanford University; Stanford, CA: 1972
    [Google Scholar]
  47. Boyer HW, Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 1969; 41:459–472 [View Article] [PubMed]
    [Google Scholar]
  48. Hedgpeth J, Goodman HM, Boyer HW. DNA nucleotide sequence restricted by the RI endonuclease. Proc Natl Acad Sci USA 1972; 69:3448–3452 [View Article] [PubMed]
    [Google Scholar]
  49. Mertz JE, Davis RW. Cleavage of DNA by R 1 restriction endonuclease generates cohesive ends. Proc Natl Acad Sci USA 1972; 69:3370–3374 [View Article] [PubMed]
    [Google Scholar]
  50. Cohen SN, Chang ACY, Boyer HW, Helling RB. Construction of biologically functional bacterial plasmids In Vitro. Proc Natl Acad Sci USA 1973; 70:3240–3244 [View Article]
    [Google Scholar]
  51. Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL et al. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 1977; 2:95–113 [View Article] [PubMed]
    [Google Scholar]
  52. Yoneda Y. Increased production of extracellular enzymes by the synergistic effect of genes introduced into Bacillus subtilis by stepwise transformation. Appl Environ Microbiol 1980; 39:274–276 [View Article] [PubMed]
    [Google Scholar]
  53. Rana AK, Thakur VK. Advances and new horizons in metabolic engineering of heterotrophic bacteria and cyanobacteria for enhanced lactic acid production. Bioresour Technol 2025; 419:131951 2024 Dec 6 [View Article] [PubMed]
    [Google Scholar]
  54. Hwang S, Joung C, Kim W, Palsson B, Cho B-K. Recent advances in non-model bacterial chassis construction. Curr Opin Syst Biol 2023; 36:100471 [View Article]
    [Google Scholar]
  55. Peng W, Zhang X, Qi Q, Liang Q. Advances in adaptive laboratory evolution applications for Escherichia coli. Synth Syst Biotechnol 2025; 10:1306–1321 [View Article] [PubMed]
    [Google Scholar]
  56. Lenski RE, Rose MR, Simpson SC, Tadler SC. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 1991; 138:1315–1341 [View Article]
    [Google Scholar]
  57. Charusanti P, Fong NL, Nagarajan H, Pereira AR, Li HJ et al. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS ONE 2012; 7:e33727 [View Article] [PubMed]
    [Google Scholar]
  58. Antonovsky N, Gleizer S, Noor E, Zohar Y, Herz E et al. Síntesis de azúcar a partir de CO2 en Escherichia coli. Célula 2016; 166:115–125 [View Article]
    [Google Scholar]
  59. Ahlquist EF, Fewson CA, Ritchie DA. The induction of mutants of Acinetobacter calcoaceticus NCIB8250 and their selection by vancomycin. J Gen Microbiol 1975; 91:338–344 [View Article] [PubMed]
    [Google Scholar]
  60. Mortelmans KE, Stocker BA. Ultraviolet light protection, enhancement of ultraviolet light mutagenesis, and mutator effect of plasmid R46 in Salmonella typhimurium. J Bacteriol 1976; 128:271–282 [View Article] [PubMed]
    [Google Scholar]
  61. Klapwijk PM, van Beelen P, Schilperoort RA. Isolation of a recombination deficient Agrobacterium tumefaciens mutant. Mol Gen Genet 1979; 173:171–175 [View Article] [PubMed]
    [Google Scholar]
  62. Fives-Taylor PM, Thompson DW. Surface properties of Streptococcus sanguis FW213 mutants nonadherent to saliva-coated hydroxyapatite. Infect Immun 1985; 47:752–759 [View Article] [PubMed]
    [Google Scholar]
  63. Golden SS. Mutagenesis of cyanobacteria by classical and gene-transfer-based methods. Methods Enzymol 1988; 167:714–727 [View Article] [PubMed]
    [Google Scholar]
  64. Houk VS, Schalkowsky S, Claxton LD. Development and validation of the spiral Salmonella assay: an automated approach to bacterial mutagenicity testing. Mutat Res 1989; 223:49–64 [View Article] [PubMed]
    [Google Scholar]
  65. Rowlands RT. Industrial strain improvement: mutagenesis and random screening procedures. Enzyme Microbiol Technol 1984; 6:3–10 [View Article]
    [Google Scholar]
  66. Liu Q, Chen X, Hu G, Chu R, Liu J et al. Systems metabolic engineering of Escherichia coli for high-yield production of Para-hydroxybenzoic acid. Food Chemistry 2024; 457:140165 [View Article] [PubMed]
    [Google Scholar]
  67. Groth AC, Calos MP. Phage Integrases: biology and applications. J Miol Biol 2004; 335:667–678 [View Article] [PubMed]
    [Google Scholar]
  68. Hauser MA, Scocca JJ. Site-specific integration of the Haemophilus influenzae bacteriophage HP1: location of the boundaries of the phage attachment site. J Bacteriol 1992; 174:6674–6677 [View Article] [PubMed]
    [Google Scholar]
  69. Lewis JA, Hatfull GF. Identification and characterization of mycobacteriophage L5 excisionase. Mol Microbiol 2000; 35:350–360 [View Article] [PubMed]
    [Google Scholar]
  70. Mattis AN, Gumport RI, Gardner JF. Purification and characterization of bacteriophage P22 Xis protein. J Bacteriol 2008; 190:5781–5796 [View Article] [PubMed]
    [Google Scholar]
  71. Miyazaki R, van der Meer JR. A new large-DNA-fragment delivery system based on integrase activity from an integrative and conjugative element. Appl Environ Microbiol 2013; 79:4440–4447 [View Article]
    [Google Scholar]
  72. Wu S, Tian P, Tan T. Genomic landscapes of bacterial transposons and their applications in strain improvement. Appl Microbiol Biotechnol 2022; 106:6383–6396 [View Article] [PubMed]
    [Google Scholar]
  73. Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM. New applications for phage integrases. J Mol Biol 2014; 426:2703–2716 [View Article] [PubMed]
    [Google Scholar]
  74. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA et al. New use of BCG for recombinant vaccines. Nature 1991; 351:456–460 [View Article] [PubMed]
    [Google Scholar]
  75. Hoang TT, Kutchma AJ, Becher A, Schweizer HP. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 2000; 43:59–72 [View Article] [PubMed]
    [Google Scholar]
  76. Orr-Weaver TL, Szostak JW. Multiple, tandem plasmid integration in Saccharomyces cerevisiae. Mol Cell Biol 1983; 3:747–749 [View Article] [PubMed]
    [Google Scholar]
  77. Xu J, Zhang W. Strategies used for genetically modifying bacterial genome: site-directed mutagenesis, gene inactivation, and gene over-expression. J Zhejiang Univ Sci B 2016; 17:83–99 [View Article] [PubMed]
    [Google Scholar]
  78. Metcalf WW, Jiang W, Daniels LL, Kim SK, Haldimann A et al. Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 1996; 35:1–13 [View Article] [PubMed]
    [Google Scholar]
  79. Pósfai G, Kolisnychenko V, Bereczki Z, Blattner FR. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 1999; 27:4409–4415 [View Article] [PubMed]
    [Google Scholar]
  80. China B, Sory MP, N’Guyen BT, De Bruyere M, Cornelis GR. Role of the YadA protein in prevention of opsonization of Yersinia enterocolitica by C3b molecules. Infect Immun 1993; 61:3129–3136 [View Article] [PubMed]
    [Google Scholar]
  81. Schauer DB, Falkow S. The eae gene of Citrobacter freundii biotype 4280 is necessary for colonization in transmissible murine colonic hyperplasia. Infect Immun 1993; 61:4654–4661 [View Article] [PubMed]
    [Google Scholar]
  82. Selbitschka W, Pohler A, Simon R. The construction of reca–deficient rhizobium meliloti and r. leguminosarum strains marked with gusa or luc cassettes for use in risk–assessment studies. Mol Ecol 1992; 1:9–19 [View Article]
    [Google Scholar]
  83. Fitzpatrick R, O’Donohue M, Joy J, Heery DM, Dunican LK. Construction and characterization of recA mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum. Appl Microbiol Biotechnol 1994; 42:575–580 [View Article]
    [Google Scholar]
  84. Allaoui A, Sansonetti PJ, Parsot C. MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri lpa invasins. Mol Microbiol 1993; 7:59–68 [View Article] [PubMed]
    [Google Scholar]
  85. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269:496–512 [View Article] [PubMed]
    [Google Scholar]
  86. Collado-Vides J, Magasanik B, Gralla JD. Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev 1991; 55:371–394
    [Google Scholar]
  87. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V et al. The complete genome sequence of Escherichia coli K-12. Science 1997; 277:1453–1462 [View Article] [PubMed]
    [Google Scholar]
  88. RegulonDB The RegulonDB Database. n.d https://regulondb.ccg.unam.mx/ accessed 22 August 2024
  89. EcoCyc Encyclopedia of E. coli Genes and Metabolism. n.d https://ecocyc.org/ accessed 22 August 2024
  90. KEGG Kyoto Encyclopedia of Genes and Genomes. n.d https://www.genome.jp/kegg/ accessed 8 October 2024
  91. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 1997; 390:249–256 [View Article] [PubMed]
    [Google Scholar]
  92. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 1997; 388:539–547 [View Article] [PubMed]
    [Google Scholar]
  93. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL et al. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 1998; 392:353–358 [View Article] [PubMed]
    [Google Scholar]
  94. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393:537–544 [View Article] [PubMed]
    [Google Scholar]
  95. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ et al. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of thermotoga maritima. Nature 1999; 399:323–329 [View Article] [PubMed]
    [Google Scholar]
  96. Dayhoff MO. Computer aids to protein sequence determination. JTheor Biol 1965; 8:97–112 [View Article]
    [Google Scholar]
  97. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970; 48:443–453 [View Article] [PubMed]
    [Google Scholar]
  98. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  99. Barabási AL, Albert R. Emergence of scaling in random networks. Science 1999; 286:509–512 [View Article] [PubMed]
    [Google Scholar]
  100. Padilla-Vaca F, Anaya-Velázquez F, Franco B. Synthetic biology: novel approaches for microbiology. Int Microbiol 2015; 18:71–84 [View Article] [PubMed]
    [Google Scholar]
  101. Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol 2014; 12:381–390 [View Article] [PubMed]
    [Google Scholar]
  102. Michalodimitrakis K, Isalan M. Engineering prokaryotic gene circuits. FEMS Microbiol Rev 2009; 33:27–37 [View Article] [PubMed]
    [Google Scholar]
  103. Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 1998; 20:123–128 [View Article] [PubMed]
    [Google Scholar]
  104. Causey TB, Shanmugam KT, Yomano LP, Ingram LO. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA 2004; 101:2235–2240 [View Article] [PubMed]
    [Google Scholar]
  105. Alper H, Jin YS, Moxley JF, Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 2005; 7:155–164 [View Article] [PubMed]
    [Google Scholar]
  106. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 2005; 91:643–648 [View Article] [PubMed]
    [Google Scholar]
  107. Lee SJ, Lee D-Y, Kim TY, Kim BH, Lee J et al. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 2005; 71:7880–7887 [View Article] [PubMed]
    [Google Scholar]
  108. Li R, Li A, Zhang Y, Fu J. The emerging role of recombineering in microbiology. Eng Microbiol 2023; 3:100097 [View Article] [PubMed]
    [Google Scholar]
  109. Abbasi MN, Fu J, Bian X, Wang H, Zhang Y et al. Recombineering for genetic engineering of natural product biosynthetic pathways. Trends Biotechnol 2020; 38:715–728 [View Article] [PubMed]
    [Google Scholar]
  110. Blank K, Hensel M, Gerlach RG. Rapid and highly efficient method for scarless mutagenesis within the Salmonella enterica chromosome. PLoS One 2011; 6:e15763 [View Article] [PubMed]
    [Google Scholar]
  111. Liang R, Liu J. Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short homology regions. BMC Microbiol 2010; 10:209 [View Article] [PubMed]
    [Google Scholar]
  112. Kuhlman TE, Cox EC. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res 2010; 38:e92 [View Article] [PubMed]
    [Google Scholar]
  113. Tas H, Nguyen CT, Patel R, Kim NH, Kuhlman TE. An integrated system for precise genome modification in Escherichia coli. PLoS One 2015; 10:e0136963 [View Article] [PubMed]
    [Google Scholar]
  114. Nyerges Á, Csörgő B, Nagy I, Bálint B, Bihari P et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci USA 2016; 113:2502–2507 [View Article] [PubMed]
    [Google Scholar]
  115. Stringer AM, Singh N, Yermakova A, Petrone BL, Amarasinghe JJ et al. FRUIT, a scar-free system for targeted chromosomal mutagenesis, epitope tagging, and promoter replacement in Escherichia coli and Salmonella enterica. PLoS One 2012; 7:e44841 [View Article] [PubMed]
    [Google Scholar]
  116. Krylov AA, Kolontaevsky EE, Mashko SV. Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases. J Microbiol Methods 2014; 105:109–115 [View Article] [PubMed]
    [Google Scholar]
  117. Elmore JR, Dexter GN, Baldino H, Huenemann JD, Francis R. Peabody GL 5th, martinez-baird j, riley LA, simmons t, coleman-derr d, guss AM, egbert RG. high-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration. Sci Adv 2023; 9: Epub 2023 Mar 10 [View Article] [PubMed]
    [Google Scholar]
  118. Yan X, Bao W, Wu Y, Zhang C, Mao Z et al. Paradigm of engineering recalcitrant non-model microorganism with dominant metabolic pathway as a biorefinery chassis. Nat Commun 2024; 15:10441 [View Article]
    [Google Scholar]
  119. Jin ZH, Xu B, Lin SZ, Jin QC, Cen PL. Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol 2009; 152:297–303 [View Article]
    [Google Scholar]
  120. Lu G, Zhang Z, Chen J, Chen W, Chen S et al. Enhancement of spinosad production in saccharopolyspora spinosa by overexpression of the complete 74 kb spinosyn gene cluster. Microb Cell Fact 2025; 24:27 [View Article]
    [Google Scholar]
  121. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR et al. Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 2006; 103:425–430 [View Article] [PubMed]
    [Google Scholar]
  122. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 2006; 103:15582–15587 [View Article]
    [Google Scholar]
  123. Li R, Townsend CA. Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 2006; 8:240–252 [View Article] [PubMed]
    [Google Scholar]
  124. J HM, Kim JM, Lee HJ, Madsen EL, Jeon CO. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ Sci Technol 2012; 46:7731–7740 [View Article]
    [Google Scholar]
  125. Malvankar NS, Lovley DR. Microbial nanowires for bioenergy applications. Curr Opin Biotechnol 2014; 27:88–95 [View Article] [PubMed]
    [Google Scholar]
  126. Weinstock MT, Hesek ED, Wilson CM, Gibson DG. Vibrio natriegens as a fast-growing host for molecular biology. Nat Methods 2016; 13:849–851 [View Article] [PubMed]
    [Google Scholar]
  127. Camas-Reyes A, Laguna-Ramírez R, Jofre-Garfias AE et al. E. coli cultures expressing a synthetic sequence of ptz gene (stz) promoted in vitro direct organogenesis in Nicotiana tabacum L.. Plant Cell Tiss Organ Cult 2019; 137:87–100 [View Article]
    [Google Scholar]
  128. Oliveira-Filho ER, Gomez JGC, Taciro MK, Silva LF. Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. Bioresour Technol 2021; 337:125472 [View Article] [PubMed]
    [Google Scholar]
  129. Lammens EM, Nikel PI, Lavigne R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat Commun 2020; 11:5294 [View Article] [PubMed]
    [Google Scholar]
  130. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 2009; 460:894–898 [View Article] [PubMed]
    [Google Scholar]
  131. Simon AJ, d’Oelsnitz S, Ellington AD. Synthetic evolution. Nat Biotechnol 2019; 37:730–743 [View Article] [PubMed]
    [Google Scholar]
  132. Wannier TM, Ciaccia PN, Ellington AD, Filsinger GT, Isaacs FJ et al. Recombineering and MAGE. Nat Rev Methods Primers 2021; 1:7 [View Article] [PubMed]
    [Google Scholar]
  133. Gao H, Qiu Z, Wang X, Zhang X, Zhang Y et al. Recent advances in genome-scale engineering in Escherichia coli and their applications. Eng Microbiol 2024; 4:100115 [View Article] [PubMed]
    [Google Scholar]
  134. Sun Z, Deng A, Hu T, Wu J, Sun Q et al. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl Microbiol Biotechnol 2015; 99:5151–5162 [View Article] [PubMed]
    [Google Scholar]
  135. Deng A, Sun Z, Wang T, Cui D, Li L et al. Simultaneous multiplex genome engineering via accelerated natural transformation in Bacillus subtilis. Front Microbiol 2021; 12:714449 [View Article]
    [Google Scholar]
  136. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005; 60:174–182 [View Article] [PubMed]
    [Google Scholar]
  137. Jansen R, Embden JDA van, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43:1565–1575 [View Article] [PubMed]
    [Google Scholar]
  138. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321:960–964 [View Article] [PubMed]
    [Google Scholar]
  139. Arroyo-Olarte RD, Rodríguez-Hernández KD, Morales-Ríos E. Chapter 2 - genome engineering in bacteria: current and prospective applications. Method Microbiol 2023; 52:35–76 [View Article]
    [Google Scholar]
  140. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109:E2579–86 [View Article] [PubMed]
    [Google Scholar]
  141. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 2011; 39:9275–9282 [View Article] [PubMed]
    [Google Scholar]
  142. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337:816–821 [View Article] [PubMed]
    [Google Scholar]
  143. Cho S, Shin J, Cho BK. Applications of CRISPR/Cas system to bacterial metabolic engineering. Int J Mol Sci 2018; 19:1089 [View Article] [PubMed]
    [Google Scholar]
  144. Roberts A, Barrangou R. Applications of CRISPR-Cas systems in lactic acid bacteria. FEMS Microbiol Rev 2020; 44:523–537 [View Article] [PubMed]
    [Google Scholar]
  145. Vento JM, Crook N, Beisel CL. Barriers to genome editing with CRISPR in bacteria. J Ind Microbiol Biotechnol 2019; 46:1327–1341 [View Article] [PubMed]
    [Google Scholar]
  146. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013; 31:233–239 [View Article] [PubMed]
    [Google Scholar]
  147. Pyne ME, Moo-Young M, Chung DA, Chou CP. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol 2015; 81:5103–5114 [View Article] [PubMed]
    [Google Scholar]
  148. Liu Y, Wan X, Wang B. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. Nat Commun 2019; 10:3693 [View Article]
    [Google Scholar]
  149. Calvo-Villamañán A, Ng JW, Planel R, Ménager H, Chen A et al. On-target activity predictions enable improved CRISPR-dCas9 screens in bacteria. Nucleic Acids Res 2020; 48:e64 [View Article] [PubMed]
    [Google Scholar]
  150. Call SN, Andrews LB. CRISPR-based approaches for gene regulation in non-model bacteria. Front Genome Ed 2022; 4:892304 [View Article]
    [Google Scholar]
  151. Huang H, Zheng G, Jiang W, Hu H, Lu Y. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 2015; 47:231–243 [View Article] [PubMed]
    [Google Scholar]
  152. Kim M-G, Go M-J, Kang S-H, Jeong S-H, Lim K. Revolutionizing CRISPR technology with artificial intelligence. Exp Mol Med 2025; 57:1419–1431 [View Article] [PubMed]
    [Google Scholar]
  153. Boer MD, Melkonian C, Zafeiropoulos H, Haas AF, Garza DR et al. Improving genome-scale metabolic models of incomplete genomes with deep learning. iScience 2024; 27:111349 [View Article] [PubMed]
    [Google Scholar]
  154. Lee YQ, Choi Y-M, Park S-Y, Kim S-K, Lee M et al. Genome-scale metabolic model-guided systematic framework for designing customized live biotherapeutic products. npj Syst Biol Appl 2025; 11:73 [View Article]
    [Google Scholar]
  155. LeBlanc N, Charles TC. Bacterial genome reductions: tools, applications, and challenges. Front Genome 2022; 4:957289 [View Article] [PubMed]
    [Google Scholar]
  156. Chaudhari P, Ranjan M. Advances in CRISPR-based technologies for genome editing in microorganisms. IJMMTD 2024; 10:11–16 [View Article]
    [Google Scholar]
  157. Keiper F, Atanassova A. Regulation of synthetic biology: developments under the convention on biological diversity and its protocols. Front Bioeng Biotechnol 2020; 8:310 [View Article] [PubMed]
    [Google Scholar]
  158. Manheim BS. Regulation of synthetic biology under the nagoya protocol. Nat Biotechnol 2016; 34:1104–1105 [View Article] [PubMed]
    [Google Scholar]
  159. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 1987; 53:2420–2425 [View Article]
    [Google Scholar]
  160. Khosla C, Bailey JE. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 1988; 331:633–635 [View Article] [PubMed]
    [Google Scholar]
  161. Mondello FJ. Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J Bacteriol 1989; 171:1725–1732 [View Article]
    [Google Scholar]
  162. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 1991; 57:2810–2815 [View Article]
    [Google Scholar]
  163. Ki RS. Metabolic Engineering of Zymomonas mobilis for Ethanol Production from Starch. In The Microbiological Society of Korea; 1991 pp 97–109
    [Google Scholar]
  164. Tong IT, Liao HH, Cameron DC. 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 1991; 57:3541–3546 [View Article] [PubMed]
    [Google Scholar]
  165. Ikeda M, Katsumata R. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing corynebacterium glutamicum strain. Appl Environ Microbiol 1992; 58:781–785 [View Article] [PubMed]
    [Google Scholar]
  166. Slater S, Gallaher T, Dennis D. Production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) in a recombinant Escherichia coli strain. Appl Environ Microbiol 1992; 58:1089–1094 [View Article] [PubMed]
    [Google Scholar]
  167. Mermelstein LD, Papoutsakis ET, Petersen DJ, Bennett GN. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon. Biotechnol Bioeng 1993; 42:1053–1060 [View Article] [PubMed]
    [Google Scholar]
  168. Plückthun A. Antibodies from Escherichia coli. Nature 1990; 347:497–498 [View Article] [PubMed]
    [Google Scholar]
  169. Takahashi N, Orita T, Hirose M. Production of chicken ovalbumin in Escherichia coli. Gene 1995; 161:211–216 [View Article]
    [Google Scholar]
  170. Valentin HE, Dennis D. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 1997; 58:33–38 [View Article] [PubMed]
    [Google Scholar]
  171. Han T, Lee SY. Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer. Metab Eng 2023; 79:78–85 [View Article] [PubMed]
    [Google Scholar]
  172. Li X, Dong A, Yang J, Zhu J, Zhan Y et al. Metabolic engineering of Bacillus licheniformis DW2 for ectoine production. World J Microbiol Biotechnol 2025; 41: [View Article]
    [Google Scholar]
  173. Jia D, Deng R, Wang W, Hu H, Zhang X. Metabolic engineering of Pseudomonas chlororaphis P3 for high-level and directed production of phenazine-1,6-dicarboxylic acid from crude glycerol. Bioresource Technology 2025; 419:132053 [View Article] [PubMed]
    [Google Scholar]
  174. Sugisawa T, Hoshino T, Masuda S, Nomura S, Setoguchi Y et al. Microbial production of 2-keto-L-gulonic acid from L-sorbose and D-sorbitol by Gluconobacter melanogenus. Agric Biol Chem 1990; 54:1201–1209 [View Article]
    [Google Scholar]
  175. Park YS, Inoue K, Yahiro K, Okabe M. Improvement of cephamycin C production by a mutant resistant to linoleic acid. J Ferment Bioeng 1994; 78:88–92 [View Article]
    [Google Scholar]
  176. Rani KS, Swamy MV, Sunitha D, Haritha D, Seenayya G. Improved ethanol tolerance and production in strains of Clostridium thermocellum. World J Microbiol Biotechnol 1996; 12:57–60 [View Article]
    [Google Scholar]
  177. Sidhu GS, Sharma P, Chakrabarti T, Gupta JK. Strain improvement for the production of a thermostable α-amylase. Enzyme Microbial Technol 1997; 21:525–530 [View Article]
    [Google Scholar]
  178. Rajoka MI, Bashir A, Hussain SRS, Malik KA. γ-ray induced mutagenesis ofCellulomonas biazotea for improved production of cellulases. Folia Microbiol 1998; 43:15–22 [View Article]
    [Google Scholar]
  179. Lee SH, Rho YT. Improvement of tylosin fermentation by mutation and medium optimization. Lett Appl Microbiol 1999; 28:142–144 [View Article] [PubMed]
    [Google Scholar]
  180. Venkateswarlu G, Murali PS, Sharma G, Venkateswar Rao L. Improvement of rifamycin B production using mutant strains of Amycolatopsis mediterranei. Bioprocess Engineering 2000; 23:315–318 [View Article]
    [Google Scholar]
  181. Amaratunga M, Lobos JH, Johnson BF, Williams D. US Patent 6030819 Genetically engineered microorganisms and method for producing 4-hydroxybenzoic acid; 2000
  182. Siddique S, Syed Q, Adnan A, Qureshi FA. Production and screening of high yield avermectin B1b mutant of Streptomyces avermitilis 41445 through mutagenesis. Jundishapur J Microbiol 2014; 7:e8626 [View Article] [PubMed]
    [Google Scholar]
  183. Cubas-Cano E, González-Fernández C, Tomás-Pejó E. Evolutionary engineering of Lactobacillus pentosus improves lactic acid productivity from xylose-rich media at low pH. Bioresour Technol 2019; 288:121540 [View Article] [PubMed]
    [Google Scholar]
  184. Fu J, Wang Z, Miao H, Yu C, Zheng Z et al. Rapid adaptive evolution of Bacillus coagulans to undetoxified corncob hydrolysates for lactic acid production and new insights into its high phenolic degradation. Bioresource Technology 2023; 383:129246 [View Article]
    [Google Scholar]
  185. Ding X, Zheng Z, Zhao G, Wang L, Wang H et al. Adaptive laboratory evolution for improved tolerance of vitamin K in Bacillus subtilis. Appl Microbiol Biotechnol 2024; 108: [View Article]
    [Google Scholar]
  186. Woo S, Han YH, Lee HK, Baek D, Noh MH et al. Generation of a vibrio-based platform for efficient conversion of raffinose through adaptive laboratory evolution on a solid medium. Metabolic Engineering 2024; 86:300–307 [View Article] [PubMed]
    [Google Scholar]
  187. Yuan Y, Yang L, Fang Z, Chen H, Sun F et al. Improving geldanamycin production in Streptomyces geldanamycininus through UV mutagenesis of protoplast. Microorganisms 2025; 13:186 [View Article]
    [Google Scholar]
  188. Lagarde D, Beuf L, Vermaas W. Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 2000; 66:64–72 [View Article]
    [Google Scholar]
  189. Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 2005; 23:612–616 [View Article] [PubMed]
    [Google Scholar]
  190. Yuan LZ, Rouvière PE, Larossa RA, Suh W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 2006; 8:79–90 [View Article] [PubMed]
    [Google Scholar]
  191. Zhu Y, Chen X, Chen T, Zhao X. Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis. FEMS Microbiol Lett 2007; 266:224–230 [View Article] [PubMed]
    [Google Scholar]
  192. Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 2008; 101:881–893 [View Article] [PubMed]
    [Google Scholar]
  193. Xia L, Zeng Z, Ding X, Huang F. The expression of a recombinant cry1Ac gene with subtilisin-like protease CDEP2 gene in acrystalliferous Bacillus thuringiensis by Red/ET homologous recombination. Curr Microbiol 2009; 59:386–392 [View Article] [PubMed]
    [Google Scholar]
  194. Duan YX, Chen T, Chen X, Zhao XM. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biotechnol 2010; 85:1907–1914 [View Article] [PubMed]
    [Google Scholar]
  195. Hou X, Chen X, Zhang Y, Qian H, Zhang W. (L)-Valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids 2012; 43:2301–2311 [View Article] [PubMed]
    [Google Scholar]
  196. Cimini D, De Rosa M, Carlino E, Ruggiero A, Schiraldi C. Homologous overexpression of RfaH in E. coli K4 improves the production of chondroitin-like capsular polysaccharide. Microb Cell Fact 2013; 12:46 [View Article] [PubMed]
    [Google Scholar]
  197. Huang M, Chen Y, Liu J. Chromosomal engineering of Escherichia coli for efficient production of coenzyme Q10. Chin J Chem Eng 2014; 22:559–569 [View Article]
    [Google Scholar]
  198. Miao L, Li Q, Diao A, Zhang X, Ma Y. Construction of a novel phenol synthetic pathway in Escherichia coli through 4-hydroxybenzoate decarboxylation. Appl Microbiol Biotechnol 2015; 99:5163–5173 [View Article] [PubMed]
    [Google Scholar]
  199. Jiao S, Li X, Yu H, Yang H, Li X et al. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnol Bioeng 2017; 114:832–842 [View Article] [PubMed]
    [Google Scholar]
  200. Luo G, Zhao N, Jiang S et al. Application of RecET-Cre/loxP system in Corynebacterium glutamicum ATCC14067 for l-leucine production.. Biotechnol Lett 2021; 43:297–306 [View Article]
    [Google Scholar]
  201. Hao Y, You Y, Chen Z, Li J, Liu G et al. Avermectin B1a production in Streptomyces avermitilis is enhanced by engineering aveC and precursor supply genes. Appl Microbiol Biotechnol 2022; 106:2191–2205 [View Article] [PubMed]
    [Google Scholar]
  202. Wu J, Du G, Chen J, Zhou J. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep 2015; 5:13477 [View Article]
    [Google Scholar]
  203. Li Y, Lin Z, Huang C, Zhang Y, Wang Z et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng 2015; 31:13–21 [View Article] [PubMed]
    [Google Scholar]
  204. Cleto S, Jensen JV, Wendisch VF, Lu TK. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 2016; 5:375–385 [View Article] [PubMed]
    [Google Scholar]
  205. Wu MY, Sung LY, Li H, Huang CH, Hu YC. Combining CRISPR and CRISPRi systems for metabolic engineering of E. coli and 1,4-BDO Biosynthesis. ACS Synth Biol 2017; 6:2350–2361 [View Article] [PubMed]
    [Google Scholar]
  206. Kaczmarzyk D, Cengic I, Yao L, Hudson EP. Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab Eng 2018; 45:59–66 [View Article] [PubMed]
    [Google Scholar]
  207. Wang J, Zhao P, Li Y, Xu L, Tian P. Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis. Microb Cell Fact 2018; 17:56 [View Article] [PubMed]
    [Google Scholar]
  208. Qin Q, Ling C, Zhao Y, Yang T, Yin J et al. CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng 2018; 47:219–229 [View Article] [PubMed]
    [Google Scholar]
  209. Wu Y, Chen T, Liu Y, Lv X, Li J et al. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab Eng 2018; 49:232–241 [View Article] [PubMed]
    [Google Scholar]
  210. Watzlawick H, Altenbuchner J. Multiple integration of the gene ganA into the Bacillus subtilis chromosome for enhanced β-galactosidase production using the CRISPR/Cas9 system. AMB Express 2019; 9:158 [View Article] [PubMed]
    [Google Scholar]
  211. Racharaks R, Arnold W, Peccia J. Development of CRISPR-Cas9 knock-in tools for free fatty acid production using the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. J Microbiol Methods 2021; 189:106315 [View Article] [PubMed]
    [Google Scholar]
  212. Gu B, Kim DG, Kim D-K, Kim M, Kim HU et al. Heterologous overproduction of oviedomycin by refactoring biosynthetic gene cluster and metabolic engineering of host strain Streptomyces coelicolor. Microb Cell Fact 2023; 22:212 [View Article] [PubMed]
    [Google Scholar]
  213. Yang H, Hou Y-J, Xu J-Z, Zhang W-G. Metabolic engineering of Escherichia coli for the efficient production of l-threonine. Syst Microbiol and Biomanuf 2024; 4:810–819 [View Article]
    [Google Scholar]
  214. Jiang C, Zou D, Jiang X, Han W, Chen K et al. Enhancement of green production of heme by deleting odor-related genes from Bacillus amyloliquefaciens Based on CRISPR/Cas9n. J Agric Food Chem 2024; 72:16412–16422 [View Article] [PubMed]
    [Google Scholar]
  215. Yang M, Hao Y, Liu G, Wen Y. Enhancement of acyl-CoA precursor supply for increased avermectin B1a production by engineering meilingmycin polyketide synthase and key primary metabolic pathway genes. Microb Biotechnol 2024; 17:e14470 [View Article] [PubMed]
    [Google Scholar]
  216. Ferrando J, Miñana-Galbis D, Picart P. The construction of an environmentally friendly super-secreting strain of Bacillus subtilis through systematic modulation of its secretory pathway using the CRISPR-Cas9 system. Int J Mol Sci 2024; 25:6957 [View Article] [PubMed]
    [Google Scholar]
  217. Yin L, Xi D, Shen Y, Ding N, Shao Q et al. Rewiring metabolic flux in Corynebacterium glutamicum Using a CRISPR/dCpf1-based bifunctional regulation system. J Agric Food Chem 2024; 72:3077–3087 [View Article] [PubMed]
    [Google Scholar]
  218. Zhu Z, Cao L, Xia Z, Liu X, Chen W et al. CRISPRi-mediated multigene downregulating redirects the metabolic flux to spinosad biosynthesis in Saccharopolyspora spinosa. Synth Syst Biotechnol 2025; 10:583–592 [View Article] [PubMed]
    [Google Scholar]
  219. Yang S, Zhou S, Liang Q, Wang Y, Luo W. Engineering Escherichia coli for Efficient Production of L-Tryptophan. Appl Biochem Biotechnol 2025; 197:4096–4108 [View Article] [PubMed]
    [Google Scholar]
  220. Liang Z, Ye Z, Xia Y, Du X, Sun L et al. One-round-per-day CRISPR genome editing of E. coli for engineering green-chemical overproducer. Chem Eng J 2025; 503:158453 [View Article]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001628
Loading
/content/journal/micro/10.1099/mic.0.001628
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error