Skip to content
1887

Abstract

This study investigates the role of polyamine biosynthesis in the pathogenesis of the bacterial phytopathogen pv. . Through a comprehensive phenotypic analysis of mutant strains affected in the synthesis of putrescine and spermidine, we reveal a complex interplay between this metabolic pathway and bacterial virulence. Disruption of putrescine synthesis impairs a variety of virulence traits such as motility, biofilm formation, siderophore production, prevention of plant stomatal closure and the functionality of the type III secretion system. This is reversed by reintroducing the deleted genes, but not by the supplementation of culture media with putrescine or apoplastic washing fluids (AWF). Similarly, suppression of spermidine biosynthesis results in a comparable phenotype. However, in this case, the wild-type phenotype is restored by adding spermidine, AWF or expressing the spermidine synthase gene. We conclude that both putrescine and spermidine are important for bacterial virulence and that plant-derived spermidine can partially compensate for bacterial needs. Accordingly, whereas putrescine deficiency leads to a hypovirulent phenotype, spermidine synthesis perturbation does not affect plant colonization. These findings emphasize the critical role of polyamine metabolism in the plant invasion process by bacterial pathogens.

Funding
This study was supported by the:
  • Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (Award 2020-01250)
    • Principle Award Recipient: AndrésGárriz
  • Consejo Nacional de Investigaciones Científicas y Técnicas (Award 11220200101412CO)
    • Principle Award Recipient: AndrésGárriz
  • Biotechnology and Biological Sciences Research Council (Award BB/M011224/1)
    • Principle Award Recipient: MarcelBach-Pages
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001569
2025-06-10
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/171/6/mic001569.html?itemId=/content/journal/micro/10.1099/mic.0.001569&mimeType=html&fmt=ahah

References

  1. Michael AJ. Polyamines in eukaryotes, bacteria, and archaea. J Biol Chem 2016; 291:14896–14903 [View Article] [PubMed]
    [Google Scholar]
  2. Michael AJ. Polyamine function in archaea and bacteria. J Biol Chem 2018; 293:18693–18701 [View Article] [PubMed]
    [Google Scholar]
  3. Schneider J, Wendisch VF. Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 2011; 91:17–30 [View Article] [PubMed]
    [Google Scholar]
  4. Fang S-B, Huang C-J, Huang C-H, Wang K-C, Chang N-W et al. speG is required for intracellular replication of Salmonella in various human cells and affects its polyamine metabolism and global transcriptomes. Front Microbiol 2017; 8:2245 [View Article] [PubMed]
    [Google Scholar]
  5. Guerra PR, Herrero-Fresno A, Ladero V, Redruello B, Dos Santos TP et al. Putrescine biosynthesis and export genes are essential for normal growth of avian pathogenic Escherichia coli. BMC Microbiol 2018; 18:226 [View Article] [PubMed]
    [Google Scholar]
  6. Guerra PR, Liu G, Lemire S, Nawrocki A, Kudirkiene E et al. Polyamine depletion has global effects on stress and virulence gene expression and affects HilA translation in Salmonella enterica serovar typhimurium. Res Microbiol 2020; 171:143–152 [View Article] [PubMed]
    [Google Scholar]
  7. Igarashi K, Kashiwagi K. Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem 2006; 139:11–16 [View Article] [PubMed]
    [Google Scholar]
  8. Igarashi K, Kashiwagi K. Effects of polyamines on protein synthesis and growth of Escherichia coli. J Biol Chem 2018; 293:18702–18709 [View Article] [PubMed]
    [Google Scholar]
  9. Lu CD, Itoh Y, Nakada Y, Jiang Y. Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 2002; 184:3765–3773 [View Article] [PubMed]
    [Google Scholar]
  10. Yao X, He W, Lu C-D. Functional characterization of seven γ-Glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-Alanine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 2011; 193:3923–3930 [View Article] [PubMed]
    [Google Scholar]
  11. Lowe-Power TM, Hendrich CG, von Roepenack-Lahaye E, Li B, Wu D et al. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ Microbiol 2018; 20:1330–1349 [View Article] [PubMed]
    [Google Scholar]
  12. Shi Z, Wang Q, Li Y, Liang Z, Xu L et al. Putrescine is an intraspecies and interkingdom cell-cell communication signal modulating the virulence of Dickeya zeae. Front Microbiol 2019; 10: [View Article]
    [Google Scholar]
  13. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012; 13:614–629 [View Article] [PubMed]
    [Google Scholar]
  14. Solmi L, Rossi FR, Romero FernandoM, Bach-Pages M, Preston GM et al. Polyamine-mediated mechanisms contribute to oxidative stress tolerance in Pseudomonas syringae. Sci Rep 2023; 13:4279 [View Article]
    [Google Scholar]
  15. Vilas JM, Romero FM, Rossi FR, Marina M, Maiale SJ et al. Modulation of plant and bacterial polyamine metabolism during the compatible interaction between tomato and Pseudomonas syringae. J Plant Physiol 2018; 231:281–290 [View Article] [PubMed]
    [Google Scholar]
  16. Solmi L, Rosli HG, Pombo MA, Stalder S, Rossi FR et al. Inferring the significance of the polyamine metabolism in the phytopathogenic bacteria Pseudomonas syringae: a meta-analysis approach. Front Microbiol 2022; 13:893626 [View Article] [PubMed]
    [Google Scholar]
  17. Miller JH. Experiments in molecular genetics. Cold Spring Harbor, N. Y: Cold Spring Harbor Laboratory; 1972
  18. Kim BJ, Park JH, Park TH, Bronstein PA, Schneider DJ et al. Effect of iron concentration on the growth rate of Pseudomonas syringae and the expression of virulence factors in hrp-inducing minimal medium. Appl Environ Microbiol 2009; 75:2720–2726 [View Article] [PubMed]
    [Google Scholar]
  19. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. pages 1-32 in: calif. Agric Exp Stn Circ 1950; 347:
    [Google Scholar]
  20. Qu L, She P, Wang Y, Liu F, Zhang D et al. Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiologyopen 2016; 5:402–412 [View Article] [PubMed]
    [Google Scholar]
  21. Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. Microbiol 1973; 74:77–91 [View Article]
    [Google Scholar]
  22. Barrientos-Moreno L, Molina-Henares MA, Pastor-García M, Ramos-González MI, Espinosa-Urgel M. Arginine biosynthesis modulates pyoverdine production and release in Pseudomonas putida as part of the mechanism of adaptation to oxidative stress. J Bacteriol 2019; 201:e00454-19 [View Article] [PubMed]
    [Google Scholar]
  23. Chitrakar R, Melotto M. Assessing stomatal response to live bacterial cells using whole leaf imaging. J Vis Exp 2010; 44:2185 [View Article] [PubMed]
    [Google Scholar]
  24. Ishiga Y, Ichinose Y. Pseudomonas syringae pv. tomato OxyR is required for virulence in tomato and Arabidopsis. Mol Plant Microbe Interact 2016; 29:119–131 [View Article] [PubMed]
    [Google Scholar]
  25. O’Leary BM, Rico A, McCraw S, Fones HN, Preston GM. The infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example. J Vis Exp 201452113 [View Article] [PubMed]
    [Google Scholar]
  26. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002; 30:e36 [View Article] [PubMed]
    [Google Scholar]
  27. Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 2022; 20:608–620 [View Article]
    [Google Scholar]
  28. Vacher C, Hampe A, Porté AJ, Sauer U, Compant S et al. The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst 2016; 47:1–24 [View Article]
    [Google Scholar]
  29. Cardile AP, Woodbury RL, Sanchez CJ Jr, Becerra SC, Garcia RA et al. Activity of norspermidine on bacterial biofilms of multidrug-resistant clinical isolates associated with persistent extremity wound infections. Adv Exp Med Biol 2017; 973:53–70 [View Article] [PubMed]
    [Google Scholar]
  30. Karatan E, Duncan TR, Watnick PI. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 2005; 187:7434–7443 [View Article] [PubMed]
    [Google Scholar]
  31. Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD et al. Polyamines are essential for the formation of plague biofilm. J Bacteriol 2006; 188:2355–2363 [View Article] [PubMed]
    [Google Scholar]
  32. Sobe RC, Bond WG, Wotanis CK, Zayner JP, Burriss MA et al. Spermine inhibits Vibrio cholerae biofilm formation through the NspS-MbaA polyamine signaling system. J Biol Chem 2017; 292:17025–17036 [View Article] [PubMed]
    [Google Scholar]
  33. Toum L, Torres PS, Gallego SM, Benavídes MP, Vojnov AA et al. Coronatine inhibits stomatal closure through guard cell-specific inhibition of NADPH oxidase-dependent ROS production. Front Plant Sci 2016; 7:1851 [View Article] [PubMed]
    [Google Scholar]
  34. Braun Y, Smirnova AV, Schenk A, Weingart H, Burau C et al. Component and protein domain exchange analysis of a thermoresponsive, two-component regulatory system of Pseudomonas syringae. Microbiology 2008; 154:2700–2708 [View Article]
    [Google Scholar]
  35. Swingle B, Thete D, Moll M, Myers CR, Schneider DJ et al. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads. Mol Microbiol 2008; 68:871–889 [View Article] [PubMed]
    [Google Scholar]
  36. Rossi FR, Gárriz A, Marina M, Pieckenstain FL. Modulation of polyamine metabolism in Arabidopsis thaliana by salicylic acid. Physiol Plant 2021; 173:843–855 [View Article] [PubMed]
    [Google Scholar]
  37. Wei C-F, Kvitko BH, Shimizu R, Crabill E, Alfano JR et al. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 2007; 51:32–46 [View Article] [PubMed]
    [Google Scholar]
  38. Rossi FR, Marina M, Pieckenstain FL. Role of arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava. Plant Biol 2015; 17:831–839 [View Article] [PubMed]
    [Google Scholar]
  39. Monier JM, Lindow SE. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci USA 2003; 100:15977–15982 [View Article] [PubMed]
    [Google Scholar]
  40. Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol 2012; 10:828–840 [View Article] [PubMed]
    [Google Scholar]
  41. Akimoto-Tomiyama C, Furutani A, Ochiai H. Real time live imaging of phytopathogenic bacteria Xanthomonas campestris pv. campestris MAFF106712 in “plant sweet home”. PLoS One 2014; 9:e94386 [View Article] [PubMed]
    [Google Scholar]
  42. Planas-Marquès M, Kressin JP, Kashyap A, Panthee DR, Louws FJ et al. Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato. J Exp Bot 2019; 71:2157–2171
    [Google Scholar]
  43. Bao Z, Wei H-L, Ma X, Swingle B. Pseudomonas syringae algu downregulates flagellin gene expression, helping evade plant immunity. J Bacteriol 2020; 202: [View Article]
    [Google Scholar]
  44. Liu Z, Hossain SS, Morales Moreira Z, Haney CH. Putrescine and Its metabolic precursor arginine promote biofilm and c-di-GMP synthesis in Pseudomonas aeruginosa. J Bacteriol 2022; 204:e0029721 [View Article] [PubMed]
    [Google Scholar]
  45. Ichinose Y, Taguchi F, Mukaihara T. Pathogenicity and virulence factors of Pseudomonas syringae. J Gen Plant Pathol 2013; 79:285–296 [View Article]
    [Google Scholar]
  46. Liu X, Zeng Y, Zhang X, Tian X, Hasan MdM et al. Polyamines inhibit abscisic acid‐induced stomatal closure by scavenging hydrogen peroxide. Physiol Plant 2023; 175:e13903 [View Article]
    [Google Scholar]
  47. Khasheii B, Mahmoodi P, Mohammadzadeh A. Siderophores: importance in bacterial pathogenesis and applications in medicine and industry. Microbiol Res 2021; 250:126790 [View Article] [PubMed]
    [Google Scholar]
  48. Ringel MT, Brüser T. The biosynthesis of pyoverdines. Microb Cell 2018; 5:424–437 [View Article] [PubMed]
    [Google Scholar]
  49. Ravel J, Cornelis P. Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 2003; 11:195–200 [View Article] [PubMed]
    [Google Scholar]
  50. Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 2015; 427:3389–3406 [View Article] [PubMed]
    [Google Scholar]
  51. Jelsbak L, Thomsen LE, Wallrodt I, Jensen PR, Olsen JE. Polyamines are required for virulence in Salmonella enterica serovar Typhimurium. PLoS One 2012; 7:e36149 [View Article] [PubMed]
    [Google Scholar]
  52. Lin Q, Wang H, Huang J, Liu Z, Chen Q et al. Spermidine is an intercellular signal modulating T3SS expression in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0064422 [View Article] [PubMed]
    [Google Scholar]
  53. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 2003; 100:10181–10186 [View Article] [PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001569
Loading
/content/journal/micro/10.1099/mic.0.001569
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error