Skip to content
1887

Abstract

Autofluorescence poses an impediment to fluorescence microscopy of biological samples. In the Gram-positive, soil-dwelling bacteria of the genus , sources of autofluorescence have not been examined systematically to date. Here, we show that the model organism for the genus, , shows autofluorescence in two of the commonly used fluorescence channels for visualizing cyan and green/yellow fluorescent proteins. We identify the source of autofluorescence in the cyan fluorescence channel as redox cofactor factor 420 (F) and target its synthesis to remove it. By deleting the () gene, which is a key biosynthetic gene for the production of F, we were able to create an autofluorescence-free strain in the cyan range of fluorescence excitation-emission. We demonstrate the usefulness of this strain by imaging the mTurquoise-tagged polar growth-related protein DivIVA and the cell division-related protein FtsZ in the deletion background. Using live-cell imaging to follow the dynamics of DivIVA and FtsZ, we demonstrate an improved signal-to-noise ratio in the mutant strain. We show that this strain can be a suitable tool for visualizing the localization of proteins in spp. and can facilitate the utilization of multi-colour imaging and fluorescence resonance energy transfer-based imaging.

Funding
This study was supported by the:
  • Carl Tryggers Stiftelse för Vetenskaplig Forskning (Award CTS 19: 102)
    • Principle Award Recipient: KlasFlärdh
  • Vetenskapsrådet (Award 2019-04643)
    • Principle Award Recipient: KlasFlärdh
  • Kungliga Fysiografiska Sällskapet i Lund (Award 42451-2021)
    • Principle Award Recipient: ParminderSingh Mavi
  • Sven och Lilly Lawskis Fond för Naturvetenskaplig Forskning
    • Principle Award Recipient: ParminderSingh Mavi
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001552
2025-04-15
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/171/4/mic001552.html?itemId=/content/journal/micro/10.1099/mic.0.001552&mimeType=html&fmt=ahah

References

  1. Mavi PS, Flärdh K. Deletion of fbiC in Streptomyces venezuelae removes autofluorescence in the excitation-emission range of cyan fluorescent protein 2025 [View Article]
    [Google Scholar]
  2. García-Plazaola JI, Fernández-Marín B, Duke SO, Hernández A, López-Arbeloa F et al. Autofluorescence: biological functions and technical applications. Plant Sci 2015; 236:136–145 [View Article] [PubMed]
    [Google Scholar]
  3. Aubin JE. Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem 1979; 27:36–43 [View Article] [PubMed]
    [Google Scholar]
  4. Billinton N, Knight AW. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem 2001; 291:175–197 [View Article] [PubMed]
    [Google Scholar]
  5. Benson RC, Meyer RA, Zaruba ME, McKhann GM. Cellular autofluorescence--is it due to flavins?. J Histochem Cytochem 1979; 27:44–48 [View Article] [PubMed]
    [Google Scholar]
  6. Salmon JM, Kohen E, Viallet P, Hirschberg JG, Wouters AW et al. Microspectrofluorometric approach to the study of free/bound NAD(P)H ratio as metabolic indicator in various cell types. Photochem Photobiol 1982; 36:585–593 [View Article] [PubMed]
    [Google Scholar]
  7. Lakowicz JR. Principles of Fluorescence Spectroscopy Springer; 2006 [View Article]
    [Google Scholar]
  8. Fujimoto D, Moriguchi T. Pyridinoline, a non-reducible crosslink of collagen. Quantitative determination, distribution, and isolation of a crosslinked peptide. J Biochem 1978; 83:863–867 [View Article] [PubMed]
    [Google Scholar]
  9. Albrecht-Buehler G. Autofluorescence of live purple bacteria in the near infrared. Exp Cell Res 1997; 236:43–50 [View Article] [PubMed]
    [Google Scholar]
  10. Pinnick RG, Hill SC, Nachman P, Pendleton JD, Fernandez GL et al. Fluorescence particle counter for detecting airborne bacteria and other biological particles. Aero Sci Tech 1995; 23:653–664 [View Article]
    [Google Scholar]
  11. Laflamme C, Verreault D, Lavigne S, Trudel L, Ho J et al. Autofluorescence as a viability marker for detection of bacterial spores. Front Biosci 2005; 10:1647–1653 [View Article] [PubMed]
    [Google Scholar]
  12. Altshuler GB, Koenig K, Hibst R, Meyer H, Flemming G et al. Laser-induced autofluorescence of carious regions of human teeth and caries-involved bacteria. In Dental Applications of Lasers 1993 pp 170–180 [View Article]
    [Google Scholar]
  13. Wong C, Ha NP, Pawlowski ME, Graviss EA, Tkaczyk TS. Differentiating between live and dead Mycobacterium smegmatis using autofluorescence. Tuberculosis 2016; 101S:S119–S123 [View Article] [PubMed]
    [Google Scholar]
  14. MacGilvary NJ, Tan S. Fluorescent Mycobacterium tuberculosis reporters: illuminating host-pathogen interactions. Pathog Dis 2018; 76:fty017 [View Article] [PubMed]
    [Google Scholar]
  15. Bashiri G, Rehan AM, Greenwood DR, Dickson JMJ, Baker EN. Metabolic engineering of cofactor F420 production in Mycobacterium smegmatis. PLoS One 2010; 5:e15803 [View Article] [PubMed]
    [Google Scholar]
  16. Tenconi E, Guichard P, Motte P, Matagne A, Rigali S. Use of red autofluorescence for monitoring prodiginine biosynthesis. J Microbiol Methods 2013; 93:138–143 [View Article] [PubMed]
    [Google Scholar]
  17. Wang TD, Triadafilopoulos G. Autofluorescence imaging: have we finally seen the light?. Gastrointest Endosc 2005; 61:686–688 [View Article] [PubMed]
    [Google Scholar]
  18. Monici M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 2005; 11:227–256 [View Article] [PubMed]
    [Google Scholar]
  19. Baschong W, Suetterlin R, Laeng RH. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J Histochem Cytochem 2001; 49:1565–1572 [View Article] [PubMed]
    [Google Scholar]
  20. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 2016; 80:1–43 [View Article] [PubMed]
    [Google Scholar]
  21. Flärdh K, Buttner MJ. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 2009; 7:36–49 [View Article] [PubMed]
    [Google Scholar]
  22. Drabikowski W, Łagwińska E, Sarzała MG. Filipin as a fluorescent probe for the location of cholesterol in the membranes of fragmented sarcoplasmic reticulum. BBA - Biomembranes 1973; 291:61–70 [View Article]
    [Google Scholar]
  23. Crissman HA, Tobey RA. Cell-cycle analysis in 20 minutes. Science 1974; 184:1297–1298 [View Article] [PubMed]
    [Google Scholar]
  24. Willemse J, van Wezel GP. Imaging of Streptomyces coelicolor A3(2) with reduced autofluorescence reveals a novel stage of FtsZ localization. PLoS One 2009; 4:e4242 [View Article] [PubMed]
    [Google Scholar]
  25. Passot FM, Cantlay S, Flärdh K. Protein phosphatase SppA regulates apical growth and dephosphorylates cell polarity determinant DivIVA in Streptomyces coelicolor. Mol Microbiol 2022; 117:411–428 [View Article] [PubMed]
    [Google Scholar]
  26. Schlimpert S, Flärdh K, Buttner J. Fluorescence time-lapse imaging of the complete S. venezuelae life cycle using a microfluidic device. J Vis Exp 2016; 2016:53863 [View Article] [PubMed]
    [Google Scholar]
  27. Gomez-Escribano JP, Holmes NA, Schlimpert S, Bibb MJ, Chandra G et al. Streptomyces venezuelae NRRL B-65442: genome sequence of a model strain used to study morphological differentiation in filamentous actinobacteria. J Ind Microbiol Biotechnol 2021; 48:kuab035 [View Article] [PubMed]
    [Google Scholar]
  28. Bush MJ, Bibb MJ, Chandra G, Findlay KC, Buttner MJ. Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in Streptomyces venezuelae. mBio 2013; 4:e00684–13 [View Article] [PubMed]
    [Google Scholar]
  29. Kieser TBM, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics: John Innes Foundation; 2000
    [Google Scholar]
  30. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [View Article] [PubMed]
    [Google Scholar]
  31. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  32. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 2019; 28:1947–1951 [View Article] [PubMed]
    [Google Scholar]
  33. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 2023; 51:D587–D592 [View Article] [PubMed]
    [Google Scholar]
  34. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES et al. Integrative genomics viewer. Nat Biotechnol 2011; 29:24–26 [View Article] [PubMed]
    [Google Scholar]
  35. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 2000; 97:5978–5983 [View Article] [PubMed]
    [Google Scholar]
  36. Gust B, Challis GL, Fowler K, Kieser T, Chater KF. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 2003; 100:1541–1546 [View Article] [PubMed]
    [Google Scholar]
  37. Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995; 158:9–14 [View Article] [PubMed]
    [Google Scholar]
  38. Schlimpert S, Wasserstrom S, Chandra G, Bibb MJ, Findlay KC et al. Two dynamin-like proteins stabilize FtsZ rings during Streptomyces sporulation. Proc Natl Acad Sci USA 2017; 114:E6176–E6183 [View Article] [PubMed]
    [Google Scholar]
  39. Hempel AM, Wang SB, Letek M, Gil JA, Flärdh K. Assemblies of DivIVA mark sites for hyphal branching and can establish new zones of cell wall growth in Streptomyces coelicolor. J Bacteriol 2008; 190:7579–7583 [View Article] [PubMed]
    [Google Scholar]
  40. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254 [View Article] [PubMed]
    [Google Scholar]
  41. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9:676–682 [View Article] [PubMed]
    [Google Scholar]
  42. Mérola F, Fredj A, Betolngar D-B, Ziegler C, Erard M et al. Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging. Biotechnol J 2014; 9:180–191 [View Article] [PubMed]
    [Google Scholar]
  43. Selengut JD, Haft DH. Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria. J Bacteriol 2010; 192:5788–5798 [View Article] [PubMed]
    [Google Scholar]
  44. Grinter R, Greening C. Cofactor F420: an expanded view of its distribution, biosynthesis and roles in bacteria and archaea. FEMS Microbiol Rev 2021; 45:fuab021 [View Article] [PubMed]
    [Google Scholar]
  45. Grinter R, Ney B, Brammananth R, Barlow CK, Cordero PRF et al. Cellular and structural basis of synthesis of the unique intermediate dehydro-F 420 -0 in Mycobacteria. mSystems 2020; 5:e00389-20 [View Article] [PubMed]
    [Google Scholar]
  46. Mark Buttner GC, Bush M. Streptomyces venezuelae transcription start sites; 2021 https://streptomyces.org.uk/vnz_tss.html
  47. Cheeseman P, Toms-Wood A, Wolfe RS. Isolation and properties of a fluorescent compound, factor 420, from Methanobacterium strain M.o.H. J Bacteriol 1972; 112:527–531 [View Article] [PubMed]
    [Google Scholar]
  48. Kiener A, Husain I, Sancar A, Walsh C. Purification and properties of Methanobacterium thermoautotrophicum DNA photolyase. J Biol Chem 1989; 264:13880–13887 [PubMed]
    [Google Scholar]
  49. Peck MW. Changes in concentrations of coenzyme F420 analogs during batch growth of Methanosarcina barkeri and Methanosarcina mazei. Appl Environ Microbiol 1989; 55:940–945 [View Article] [PubMed]
    [Google Scholar]
  50. Isabelle D, Simpson DR, Daniels L. Large-scale production of coenzyme F420-5,6 by using Mycobacterium smegmatis. Appl Environ Microbiol 2002; 68:5750–5755 [View Article] [PubMed]
    [Google Scholar]
  51. Flärdh K. Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 2003; 49:1523–1536 [View Article] [PubMed]
    [Google Scholar]
  52. Eirich LD, Vogels GD, Wolfe RS. Distribution of coenzyme F420 and properties of its hydrolytic fragments. J Bacteriol 1979; 140:20–27 [View Article] [PubMed]
    [Google Scholar]
  53. Ney B, Ahmed FH, Carere CR, Biswas A, Warden AC et al. The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria. ISME J 2017; 11:125–137 [View Article] [PubMed]
    [Google Scholar]
  54. Daniels L, Bakhiet N, Harmon K. Widespread distribution of a 5-deazaflavin cofactor in actinomyces and related bacteria. Syst Appl microbiol 1985; 6:12–17 [View Article]
    [Google Scholar]
  55. Ahmed FH, Carr PD, Lee BM, Afriat-Jurnou L, Mohamed AE et al. Sequence-structure-function classification of a catalytically diverse oxidoreductase superfamily in Mycobacteria. J Mol Biol 2015; 427:3554–3571 [View Article] [PubMed]
    [Google Scholar]
  56. Wang P, Bashiri G, Gao X, Sawaya MR, Tang Y. Uncovering the enzymes that catalyze the final steps in oxytetracycline biosynthesis. J Am Chem Soc 2013; 135:7138–7141 [View Article] [PubMed]
    [Google Scholar]
  57. Gurumurthy M, Rao M, Mukherjee T, Rao SP, Boshoff HI et al. A novel F(420) -dependent anti-oxidant mechanism protects Mycobacterium tuberculosis against oxidative stress and bactericidal agents. Mol Microbiol 2013; 87:744–755 [View Article] [PubMed]
    [Google Scholar]
  58. Imamura H, Nhat KP, Togawa H, Saito K, Iino R et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci USA 2009; 106:15651–15656 [View Article] [PubMed]
    [Google Scholar]
  59. Maglica Ž, Özdemir E, McKinney JD. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism. mBio 2015; 6:e02236-14 [View Article] [PubMed]
    [Google Scholar]
  60. Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR et al. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 2010; 328:1295–1297 [View Article] [PubMed]
    [Google Scholar]
  61. Bush MJ, Tschowri N, Schlimpert S, Flärdh K, Buttner MJ. c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 2015; 13:749–760 [View Article] [PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001552
Loading
/content/journal/micro/10.1099/mic.0.001552
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error