1887

Abstract

The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera , , , and . These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.

Funding
This study was supported by the:
  • National Center of Biotechnological Innovations (CENIBiot).
    • Principle Award Recipient: MaxChavarría
  • Vicerrectoría de Investigación, Universidad de Costa Rica (Award VI 809-C3-517)
    • Principle Award Recipient: MaxChavarría
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001513
2024-11-12
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/11/mic001513.html?itemId=/content/journal/micro/10.1099/mic.0.001513&mimeType=html&fmt=ahah

References

  1. Singh KS, Anand S, Dholpuria S, Sharma JK, Blankenfeldt W et al. Antimicrobial resistance dynamics and the one-health strategy: a review. Environ Chem Lett 2021; 19:2995–3007 [View Article]
    [Google Scholar]
  2. Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem 2021; 5:726–749 [View Article] [PubMed]
    [Google Scholar]
  3. Nelson A, Karageorgis G. Natural product-informed exploration of chemical space to enable bioactive molecular discovery. RSC Med Chem 2021; 12:353–362 [View Article] [PubMed]
    [Google Scholar]
  4. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021; 20:200–216 [View Article] [PubMed]
    [Google Scholar]
  5. von Bubnoff A. Seeking new antibiotics in nature’s backyard. Cell 2006; 127:867–869 [View Article]
    [Google Scholar]
  6. Belyagoubi L, Belyagoubi-Benhammou N, Jurado V, Dupont J, Lacoste S et al. Antimicrobial activities of culturable microorganisms (actinomycetes and fungi) isolated from Chaabe Cave, Algeria. Int J Speleol 2018; 47:189–199 [View Article]
    [Google Scholar]
  7. Lee NM, Meisinger DB, Aubrecht R, Kovačik L, Saiz-Jimenez C et al. Caves and karst environments. In Life at Extremes: Environments, Organisms and Strategies for Survival 2012 pp 320–344 [View Article]
    [Google Scholar]
  8. Rangseekaew P, Pathom-Aree W. Cave actinobacteria as producers of bioactive metabolites. Front Microbiol 2019; 10:387 [View Article] [PubMed]
    [Google Scholar]
  9. Jiang Z, Guo L, Chen C, Liu S, Zhang L et al. Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the Streptomyces sp. CC8-201 from the soil of A karst cave. J Antibiot 2015; 68:771–774 [View Article]
    [Google Scholar]
  10. Herold K, Gollmick FA, Groth I, Roth M, Menzel K-D et al. Cervimycin A-D: a polyketide glycoside complex from a cave bacterium can defeat vancomycin resistance. Chemistry 2005; 11:5523–5530 [View Article] [PubMed]
    [Google Scholar]
  11. Derewacz DK, McNees CR, Scalmani G, Covington CL, Shanmugam G et al. Structure and stereochemical determination of hypogeamicins from a cave-derived actinomycete. J Nat Prod 2014; 77:1759–1763 [View Article] [PubMed]
    [Google Scholar]
  12. Cheeham N, Sadoway T, Rule D, Watson K, Moote P et al. Cure from the cave: volcanic cave actinomycetes and their potential in drug discovery. Int J Speleol 2013; 42:35–47 [View Article]
    [Google Scholar]
  13. Ambrožič Avguštin J, Petrič P, Pašić L et al. Screening the cultivable cave microbial mats for the production of antimicrobial compounds and antibiotic resistance. Int J Speleol 2019; 48:295–303 [View Article]
    [Google Scholar]
  14. Northup DE, Lavoie KH. Geomicrobiology of caves: a review. Geomicrobiol J 2001; 18:199–222 [View Article]
    [Google Scholar]
  15. Banerjee S, Joshi SR. Insights into cave architecture and the role of bacterial biofilm. Proc Natl Acad Sci India Sect B Biol Sci 2013; 83:277–290 [View Article]
    [Google Scholar]
  16. Ghosh S, Kuisiene N, Cheeptham N. The cave microbiome as a source for drug discovery: reality or pipe dream?. Biochem Pharmacol 2017; 134:18–34 [View Article] [PubMed]
    [Google Scholar]
  17. De Mandal S, Chatterjee R, Kumar NS. Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiol 2017; 17:90 [View Article] [PubMed]
    [Google Scholar]
  18. Hershey OS, Barton HA. The microbial diversity of caves. In Cave Ecology vol 235 2018 pp 69–90
    [Google Scholar]
  19. Lamprinou V, Tryfinopoulou K, Velonakis E, Vatopoulos A, Antonopoulou S et al. Cave Cyanobacteria showing antibacterial activity. Int J Speleol 2015; 44:231–238 [View Article]
    [Google Scholar]
  20. Pašić L, Kovče B, Sket B, Herzog-Velikonja B. Diversity of microbial communities colonizing the walls of a Karstic cave in Slovenia. FEMS Microbiol Ecol 2009; 71:50–60 [View Article]
    [Google Scholar]
  21. Candiroglu B, Dogruoz Gungor N. Cave ecosystems: microbiological view. Eur J Biol 2017; 76:36–42 [View Article]
    [Google Scholar]
  22. Jurado V, Laiz L, Rodriguez-Nava V, Boiron P, Hermosin B et al. Pathogenic and opportunistic microorganisms in caves. Int J Speleol 2010; 39:15–24 [View Article]
    [Google Scholar]
  23. Seo JP, Yun YW, Lee SD. Nocardia speluncae sp. nov., isolated from a cave. Int J Syst Evol Microbiol 2007; 57:2932–2935 [View Article] [PubMed]
    [Google Scholar]
  24. Rao MPN, Dong Z-Y, Zhang H, Niu X-K, Zhang K et al. Bacillus antri sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 2019; 69:2335–2339 [View Article] [PubMed]
    [Google Scholar]
  25. Fang B-Z, Han M-X, Jiao J-Y, Zhang X-T, Xie Y-G et al. Nocardioides speluncae sp. nov., a novel actinobacterium isolated from a karstic subterranean environment sample. Antonie van Leeuwenhoek 2019; 112:857–865 [View Article] [PubMed]
    [Google Scholar]
  26. Xie Y-G, Fang B-Z, Han M-X, Liu L, Jiao J-Y et al. Microlunatus speluncae sp. nov., a novel actinobacterium isolated from a Karstic subterranean environment sample. Antonie van Leeuwenhoek 2020; 113:117–125 [View Article] [PubMed]
    [Google Scholar]
  27. D’Auria G, Artacho A, Rojas RA, Bautista JS, Méndez R et al. Metagenomics of bacterial diversity in villa luz caves with sulfur water springs. Genes (Basel) 2018; 9:55 [View Article] [PubMed]
    [Google Scholar]
  28. Tomczyk-Żak K, Zielenkiewicz U. Microbial diversity in caves. Geomicrobiol J 2016; 33:20–38 [View Article]
    [Google Scholar]
  29. Turrini P, Tescari M, Visaggio D, Pirolo M, Lugli GA et al. The microbial community of a biofilm lining the wall of a pristine cave in Western New Guinea. Microbiol Res 2020; 241:126584 [View Article] [PubMed]
    [Google Scholar]
  30. Groth I, Schumann P, Schütze B, Augsten K, Stackebrandt E. Knoellia sinensis gen. nov., sp. nov. and Knoellia subterranea sp. nov., two novel actinobacteria isolated from a cave. Int J Syst Evol Microbiol 2002; 52:77–84 [View Article] [PubMed]
    [Google Scholar]
  31. Duo J-L, Cha Q-Y, Zhou X-K, Zhang T-K, Qin S-C et al. Aquabacter cavernae sp. nov., a bacterium isolated from cave soil. Int J Syst Evol Microbiol 2019; 69:3716–3722 [View Article] [PubMed]
    [Google Scholar]
  32. Zhu H-Z, Zhang Z-F, Zhou N, Jiang C-Y, Wang B-J et al. Bacteria and metabolic potential in karst caves revealed by intensive bacterial cultivation and genome assembly. Appl Environ Microbiol 2021; 87:e02440-20 [View Article] [PubMed]
    [Google Scholar]
  33. Suriyachadkun C, Ngaemthao W, Pujchakarn T, Mhuantong W, Chunhametha S. Prauserella cavernicola sp. nov., isolated from cave rock. Int J Syst Evol Microbiol 2021; 71:71 [View Article] [PubMed]
    [Google Scholar]
  34. Bhat MP, Nayaka S. Cave soil Streptomyces sp. strain YC69 antagonistic to chilli fungal pathogens exhibits In Vitro anticancer activity against human cervical cancer cells. Appl Biochem Biotechnol 2023; 195:6232–6255 [View Article] [PubMed]
    [Google Scholar]
  35. Stankovic N, Radulovic V, Petkovic M, Vuckovic I, Jadranin M et al. Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl Microbiol Biotechnol 2012; 96:1217–1231 [View Article] [PubMed]
    [Google Scholar]
  36. Ulloa A, Argüello A, Obando A, Vargas M. Geomorfología y espeleogénesis del sistema kárstico de cuevas de venado, Costa Rica. Rev Geol Amér Central 2021; 64:1–31
    [Google Scholar]
  37. Ulloa A, Aguilar T, Goicoechea C, Ramírez R. Descripción, clasificación y aspectos geológicos de las zonas kársticas de Costa Rica. Rev Geol Amér Central 2021; 64:1–31 [View Article]
    [Google Scholar]
  38. Ulloa A, Campos-Fernández CS, Rojas L. Cueva los minerales, volcán irazú, Costa Rica: descripción, mineralogía y origen. Rev Geol Amér Central 2013; 48:169–187
    [Google Scholar]
  39. Ulloa A, Gázquez F, Sanz-Arranz A, Medina J, Rull F et al. Extremely high diversity of sulfate minerals in caves of the Irazú Volcano (Costa Rica) related to crater lake and fumarolic activity. IJS 2018; 47:229–246 [View Article]
    [Google Scholar]
  40. Deleva S, Chaverri G. Diversity and conservation of cave-dwelling bats in the Brunca Region of Costa Rica. Diversity 2018; 10:43 [View Article]
    [Google Scholar]
  41. Deleva S, Ulloa A, Oliveira HFM, Simov N, Didonna F et al. Cave-dwelling fauna of Costa Rica: current state of knowledge and future research perspectives. SB 2023; 47:29–62 [View Article]
    [Google Scholar]
  42. Rojas-Gätjens D, Valverde-Madrigal KS, Rojas-Jimenez K, Pereira R, Avey-Arroyo J et al. Antibiotic-producing Micrococcales govern the microbiome that inhabits the fur of two- and three-toed sloths. Environ Microbiol 2022; 24:3148–3163 [View Article] [PubMed]
    [Google Scholar]
  43. Cambronero-Heinrichs JC, Matarrita-Carranza B, Murillo-Cruz C, Araya-Valverde E, Chavarría M et al. Phylogenetic analyses of antibiotic-producing Streptomyces sp. isolates obtained from the stingless-bee Tetragonisca angustula (Apidae: Meliponini). Microbiology 2019; 165:292–301 [View Article] [PubMed]
    [Google Scholar]
  44. Matarrita-Carranza B, Murillo-Cruz C, Avendaño R, Ríos MI, Chavarría M et al. Streptomyces sp. M54: an actinobacteria associated with a neotropical social wasp with high potential for antibiotic production. Antonie Van Leeuwenhoek 2021; 114:379–398 [View Article] [PubMed]
    [Google Scholar]
  45. Chapin KJ, Hebets EA. The behavioral ecology of amblypygids. J Arachnol 2016; 44:1–14 [View Article]
    [Google Scholar]
  46. APHA APHA/AWWA/WEF (2017) Standard Methods for the Examination of Water and Wastewater, 23rd. edn 2017
    [Google Scholar]
  47. Stewart BA, Porter LK, Beard WE. Determination of total nitrogen and carbon in soils by a commercial dumas apparatus. Soil Science Soc of Amer J 1964; 28:366–368 [View Article]
    [Google Scholar]
  48. Rojas-Gätjens D, Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Libby E et al. Temperature and elemental sulfur shape microbial communities in two extremely acidic aquatic volcanic environments. Extremophiles 2021; 25:85–99 [View Article] [PubMed]
    [Google Scholar]
  49. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 2011; 108 Suppl 1:4516–4522 [View Article] [PubMed]
    [Google Scholar]
  50. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13:581–583 [View Article] [PubMed]
    [Google Scholar]
  51. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  52. R Core Team R foundation for statistical computing. In R: A Language and Environment for Statistical Computing 2018
    [Google Scholar]
  53. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P et al. Vegan: community ecology package (version 2.6-4). In The Comprehensive R Archive Network 2022
    [Google Scholar]
  54. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  55. Grubbs KJ, May DS, Sardina JA, Dermenjian RK, Wyche TP et al. Pollen Streptomyces produce antibiotic that inhibits the honey bee pathogen Paenibacillus larvae. Front Microbiol 2021; 12:632637 [View Article]
    [Google Scholar]
  56. Subramani R, Aalbersberg W. Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 2013; 97:9291–9321 [View Article] [PubMed]
    [Google Scholar]
  57. Axenov-Gibanov DV, Voytsekhovskaya IV, Tokovenko BT, Protasov ES, Gamaiunov SV et al. Actinobacteria isolated from an underground lake and moonmilk speleothem from the biggest conglomeratic Karstic Cave in Siberia as sources of novel biologically active compounds. PLoS One 2016; 11:e0149216 [View Article]
    [Google Scholar]
  58. Anderson KL, Lebepe-Mazur S. Comparison of rapid methods for the extraction of bacterial DNA from colonic and caecal lumen contents of the pig. J Appl Microbiol 2003; 94:988–993 [View Article] [PubMed]
    [Google Scholar]
  59. Jose PA, Santhi VS, Jebakumar SRD. Phylogenetic-affiliation, antimicrobial potential and PKS gene sequence analysis of moderately halophilic Streptomyces sp. inhabiting an Indian saltpan. J Basic Microbiol 2011; 51:348–356 [View Article] [PubMed]
    [Google Scholar]
  60. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  61. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  62. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  63. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  64. Bolz A, Calvo C. Carbonate platform development in an intraoceanic arc setting: Costa Rica’s largest limestone sequence - The Fila de Cal Formation (Middle Eocene to Lower Oligocene). Rev Geol Amér Central 2018; 58:85–114 [View Article]
    [Google Scholar]
  65. Rodríguez-Hernández E, Obando-Acuña LG, Murillo-Maikut S, Sandoval MI. Mármoles y granates producto del metamorfismo de contacto. Rev Geol Amér Central 2020; 63:1–11
    [Google Scholar]
  66. Zhu HZ, Zhang ZF, Zhou N, Jiang CY, Wang BJ et al. Diversity, distribution and co-occurrence patterns of bacterial communities in a Karst cave system. Front Microbiol 2019; 10:1726 [View Article] [PubMed]
    [Google Scholar]
  67. Jurado V, Del Rosal Y, Jimenez de Cisneros C, Liñan C, Martin-Pozas T et al. Microbial communities in carbonate precipitates from drip waters in Nerja Cave, Spain. PeerJ 2022; 10:e13399 [View Article] [PubMed]
    [Google Scholar]
  68. Rusznyák A, Akob DM, Nietzsche S, Eusterhues K, Totsche KU et al. Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic herrenberg cave. Appl Environ Microbiol 2012; 78:1157–1167 [View Article] [PubMed]
    [Google Scholar]
  69. Teo WFA, Tan GYA, Li WJ. Taxonomic note on the family Pseudonocardiaceae based on phylogenomic analysis and descriptions of Allosaccharopolyspora gen. nov. and Halosaccharopolyspora gen. nov. Int J Syst Evol Microbiol 2021; 71:71 [View Article] [PubMed]
    [Google Scholar]
  70. Gonzalez-Pimentel JL, Dominguez-Moñino I, Jurado V, Laiz L, Caldeira AT et al. The rare Actinobacterium Crossiella sp. is a potential source of new bioactive compounds with activity against bacteria and fungi. Microorganisms 2022; 10:1575 [View Article] [PubMed]
    [Google Scholar]
  71. Carr G, Derbyshire ER, Caldera E, Currie CR, Clardy J. Antibiotic and antimalarial quinones from fungus-growing ant-associated Pseudonocardia sp. J Nat Prod 2012; 75:1806–1809 [View Article] [PubMed]
    [Google Scholar]
  72. Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A. Euzebya tangerina gen. nov., sp. nov., a deeply branching marine actinobacterium isolated from the sea cucumber Holothuria edulis, and proposal of Euzebyaceae fam. nov., Euzebyales ord. nov. and Nitriliruptoridae subclassis nov. Int J Syst Evol Microbiol 2010; 60:2314–2319 [View Article] [PubMed]
    [Google Scholar]
  73. Yin Q, Zhang L, Song Z-M, Wu Y, Hu Z-L et al. Euzebya rosea sp. nov., a rare actinobacterium isolated from the East China Sea and analysis of two genome sequences in the genus Euzebya. Int J Syst Evol Microbiol 2018; 68:2900–2905 [View Article] [PubMed]
    [Google Scholar]
  74. Švec P, Kosina M, Zeman M, Holochová P, Králová S. Isolated from calcite moonmilk deposits from caves. Int J Syst Evol Microbiol 2020; 70:5131–5140 [View Article]
    [Google Scholar]
  75. Nikel PI, Chavarría M, Danchin A, de Lorenzo V. From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 2016; 34:20–29 [View Article] [PubMed]
    [Google Scholar]
  76. Chavarría M, Nikel PI, Pérez-Pantoja D, de Lorenzo V. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 2013; 15:1772–1785 [View Article] [PubMed]
    [Google Scholar]
  77. Nikel PI, Fuhrer T, Chavarría M, Sánchez-Pascuala A, Sauer U et al. Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress. ISME J 2021; 15:1751–1766 [View Article] [PubMed]
    [Google Scholar]
  78. Camacho J, Mesén-Porras E, Rojas-Gätjens D, Pérez-Pantoja D, Puente-Sánchez F et al. Draft genome sequence of three hydrocarbon-degrading Pseudomonadota strains isolated from an abandoned century-old oil exploration well. Microbiol Resour Announc 2024; 13:e0107623 [View Article] [PubMed]
    [Google Scholar]
  79. Busquets A, Mulet M, Gomila M, García-Valdés E. Pseudomonas lalucatii sp. nov. isolated from Vallgornera, a karstic cave in Mallorca, Western Mediterranean. Syst Appl Microbiol 2021; 44:126205 [View Article] [PubMed]
    [Google Scholar]
  80. Abdel-Aleem H, Dishisha T, Saafan A, AbouKhadra AA, Gaber Y. Biocementation of soil by calcite/aragonite precipitation using Pseudomonas azotoformans and Citrobacter freundii derived enzymes. RSC Adv 2019; 9:17601–17611 [View Article] [PubMed]
    [Google Scholar]
  81. Heidari Nonakaran S, Pazhouhandeh M, Keyvani A, Abdollahipour FZ, Shirzad A. Isolation and identification of Pseudomonas azotoformans for induced calcite precipitation. World J Microbiol Biotechnol 2015; 31:1993–2001 [View Article] [PubMed]
    [Google Scholar]
  82. Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Environ Microbiol 2003; 69:4901–4909 [View Article] [PubMed]
    [Google Scholar]
  83. Boquet E, Boronat A, Ramos-cormenzana A. Production of calcite (Calcium Carbonate) crystals by soil bacteria is a general phenomenon. Nature 1973; 246:527–529 [View Article]
    [Google Scholar]
  84. v. Knorre H, Krumbein WE. Bacterial calcification. In Microbial Sediments 2000 [View Article]
    [Google Scholar]
  85. Özen AI, Ussery DW. Defining the Pseudomonas genus: where do we draw the line with Azotobacter?. Microb Ecol 2012; 63:239–248 [View Article] [PubMed]
    [Google Scholar]
  86. Das HK. Azotobacters as biofertilizer. Adv Appl Microbiol 2019; 108:1–43 [View Article] [PubMed]
    [Google Scholar]
  87. Rivadeneiea MA, Gonzalez-Lopez J, Ramos-Cormenzana A. Influence of ammonium ions on calcite and struvite formation byazotobacter in chemically defined media. Folia Microbiol 1985; 30:55–57 [View Article]
    [Google Scholar]
  88. Ten LN, Jeon J, Elderiny NS, Kim MK, Lee S-Y et al. Lysobacter segetis sp. nov., isolated from soil. Curr Microbiol 2020; 77:166–172 [View Article] [PubMed]
    [Google Scholar]
  89. de Bruijn I, Cheng X, de Jager V, Expósito RG, Watrous J et al. Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics 2015; 16:991 [View Article] [PubMed]
    [Google Scholar]
  90. Hayward AC, Fegan N, Fegan M, Stirling GR. Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. J Appl Microbiol 2010; 108:756–770 [View Article] [PubMed]
    [Google Scholar]
  91. Jin C-Z, Song X, Sung YJ, Jin F-J, Li T et al. Lysobacter profundi sp. nov., isolated from freshwater sediment and reclassification of Lysobacter panaciterrae as Luteimonas panaciterrae comb. nov. Int J Syst Evol Microbiol 2020; 70:3878–3887 [View Article]
    [Google Scholar]
  92. Chen W, Zhao Y-L, Cheng J, Zhou X-K, Salam N et al. Lysobacter cavernae sp. nov., a novel bacterium isolated from a cave sample. Antonie van Leeuwenhoek 2016; 109:1047–1053 [View Article] [PubMed]
    [Google Scholar]
  93. Takami H, Toyoda A, Uchiyama I, Itoh T, Takaki Y et al. Complete genome sequence and expression profile of the commercial lytic enzyme producer Lysobacter enzymogenes M497-1. DNA Res 2017; 24:169–177 [View Article] [PubMed]
    [Google Scholar]
  94. Afoshin AS, Kudryakova IV, Borovikova AO, Suzina NE, Toropygin IY et al. Lytic potential of Lysobacter capsici VKM B-2533T: bacteriolytic enzymes and outer membrane vesicles. Sci Rep 2020; 10:9944 [View Article] [PubMed]
    [Google Scholar]
  95. Zhao Y, Qian G, Ye Y, Wright S, Chen H et al. Heterocyclic aromatic N -oxidation in the biosynthesis of phenazine antibiotics from Lysobacter antibioticus. Org Lett 2016; 18:2495–2498 [View Article]
    [Google Scholar]
  96. O’’sullivan J, Mccullough JE, Tymiak AA, Kirsch DR, Trejo WH et al. Lysobactin, a novel antibacterial agent produced by Lysobacter sp. I. Taxonomy, isolation and partial characterization. J Antibiot 1988; 41:1740–1744 [View Article]
    [Google Scholar]
  97. Lamprinou V, Hernández-Mariné M, Canals T, Kormas K, Economou-Amilli A et al. Morphology and molecular evaluation of Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov., two stigonematalean cyanobacteria from Greek and Spanish caves. Int J Syst Evol Microbiol 2011; 61:2907–2915 [View Article] [PubMed]
    [Google Scholar]
  98. Wu H, Xing Y, Sun H, Mao X. Gut microbial diversity in two insectivorous bats: insights into the effect of different sampling sources. Microbiologyopen 2019; 8:e00670 [View Article] [PubMed]
    [Google Scholar]
  99. Federici L, Masulli M, De Laurenzi V, Allocati N. An overview of bats microbiota and its implication in transmissible diseases. Front Microbiol 2022; 13:1012189 [View Article] [PubMed]
    [Google Scholar]
  100. Tremblay PL, Zhang T. Genetic tools for the electrotroph Sporomusa ovata and autotrophic biosynthesis. Appl Environ Microbiol 2024; 90:e0175723 [View Article] [PubMed]
    [Google Scholar]
  101. Möller B, Oßmer R, Howard BH, Gottschalk G, Hippe H. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 1984; 139:388–396 [View Article]
    [Google Scholar]
  102. Kuhner CH, Frank C, Griesshammer A, Schmittroth M, Acker G et al. Sporomusa silvacetica sp, nov., an acetogenic bacterium isolated from aggregated forest soil. Int J Syst Bacteriol 1997; 47:352–358 [View Article] [PubMed]
    [Google Scholar]
  103. Breznak JA, Switzer JM, Seitz HJ. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 1988; 150:282–288 [View Article]
    [Google Scholar]
  104. Boga HI, Ludwig W, Brune A. Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite. Int J Syst Evol Microbiol 2003; 53:1397–1404 [View Article] [PubMed]
    [Google Scholar]
  105. Núñez-Montero K, Santos A, Quezada-Solís D, Martínez-Urtaza J, Lisón F et al. Bacterial communities in fecal samples of Myotis chiloensis from Southern, Chile. Int J Morphol 2021; 39:57–63 [View Article]
    [Google Scholar]
  106. Touchon M, Cury J, Yoon E-J, Krizova L, Cerqueira GC et al. The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol 2014; 6:2866–2882 [View Article] [PubMed]
    [Google Scholar]
  107. Adetutu E, Thorpe K, Shahsavari E, Bourne S, Cao X et al. Bacterial community survey of sediments at Naracoorte Caves, Australia. IJS 2012; 41:137–147 [View Article]
    [Google Scholar]
  108. Li M, Fang C, Kawasaki S, Huang M, Achal V. Bio-consolidation of cracks in masonry cement mortars by Acinetobacter sp. SC4 isolated from a Karst cave. Int Biodeterior Biodegradation 2019; 141:94–100 [View Article]
    [Google Scholar]
  109. Dimkić I, Fira D, Janakiev T, Kabić J, Stupar M et al. The microbiome of bat guano: for what is this knowledge important?. Appl Microbiol Biotechnol 2021; 105:1407–1419 [View Article] [PubMed]
    [Google Scholar]
  110. Martin-Pozas T, Gonzalez-Pimentel JL, Jurado V, Laiz L, Cañaveras JC et al. Crossiella, a rare Actinomycetota genus, abundant in the environment. Appl Biosci 2023; 2:194–210 [View Article]
    [Google Scholar]
  111. Buresova-Faitova A, Kopecky J, Sagova-Mareckova M, Alonso L, Vautrin F et al. Comparison of Actinobacteria communities from human-impacted and pristine karst caves. Microbiologyopen 2022; 11:e1276 [View Article] [PubMed]
    [Google Scholar]
  112. Ortiz-López FJ, Oves-Costales D, Carretero-Molina D, Martín J, Díaz C et al. Crossiellidines A-F, unprecedented pyrazine-alkylguanidine metabolites with broad-spectrum antibacterial activity from Crossiella sp. Org Lett 2023; 25:3502–3507 [View Article] [PubMed]
    [Google Scholar]
  113. Cafaro MJ, Poulsen M, Little AEF, Price SL, Gerardo NM et al. Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc Biol Sci 2011; 278:1814–1822 [View Article] [PubMed]
    [Google Scholar]
  114. Braña AF, Sarmiento-Vizcaíno A, Pérez-Victoria I, Otero L, Fernández J et al. Branimycins B and C, Antibiotics Produced by the Abyssal Actinobacterium Pseudonocardia carboxydivorans M-227. J Nat Prod 2017; 80:569–573 [View Article] [PubMed]
    [Google Scholar]
  115. Waksman SA, Woodruff HB. Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol 1941; 42:231–249 [View Article] [PubMed]
    [Google Scholar]
  116. Vilches C, Méndez C, Hardisson C, Salas JA. Biosynthesis of oleandomycin by Streptomyces antibioticus: influence of nutritional conditions and development of resistance. J Gen Microbiol 1990; 136:1447–1454 [View Article] [PubMed]
    [Google Scholar]
  117. Hütter R, Keller‐Schien W, Knüsel F, Prelog V, Rodgers GC et al. Stoffwechselprodukte von mikroorganismen. 57. Mitteilung Boromycin Helv Chim Acta 1967; 50:1533–1539 [View Article]
    [Google Scholar]
  118. Kato A, Nakaya S, Ohashi Y, Hirata H, Fujii K et al. WAP-8294A2, a novel anti-MRSA antibiotic produced by lysobacter sp. J Am Chem Soc 1997; 119:6680–6681
    [Google Scholar]
  119. Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC et al. Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 2007; 51:64–72 [View Article] [PubMed]
    [Google Scholar]
  120. Shoji J, Hinoo H, Katayama T, Nakagawa Y, Ikenishi Y et al. Structures of new peptide antibiotics, plusbacins A1-A4 and B1-B4. J Antibiot 1992; 45:824–831 [View Article]
    [Google Scholar]
  121. Shoji J, Hinoo H, Katayama T, Matsumoto K, Tanimoto T et al. Isolation and characterization of new peptide antibiotics, plusbacins A1-A4 and B1-B4. J Antibiot 1992; 45:817–823 [View Article]
    [Google Scholar]
  122. Panthee S, Hamamoto H, Paudel A, Sekimizu K. Lysobacter species: a potential source of novel antibiotics. Arch Microbiol 2016; 198:839–845 [View Article] [PubMed]
    [Google Scholar]
  123. Zong G, Fu J, Zhang P, Zhang W, Xu Y et al. Use of elicitors to enhance or activate the antibiotic production in Streptomyces. Crit Rev Biotechnol 2022; 42:1260–1283 [View Article] [PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.001513
Loading
/content/journal/micro/10.1099/mic.0.001513
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error